

Evaluation of antitumor activity of zinc selenite nano particles compared with ionic liquid in tumor-bearing animal

A thesis

Submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science

Submitted by

Islam Mamdouh Younis El-Diasty

B.Sc. in Chemistry/Biochemistry (2009) - Mansoura University

To

Faculty of Science
Ain Shams University
Department of Biochemistry

Under the Supervision of

Prof. Dr. Eman I. Kandil

Professor of Biochemistry - Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. AbdelFattah M. Badawi

Professor of Applied Surfactant Chemistry
Egyptian Petroleum Research Institute
Scientific Consultant for Science & Technology Center of Excellence

Prof. Dr. Somaya Z. Mansour

Professor of Biochemistry
National Center for Radiation Research and Technology
Atomic Energy Authority
(2016)

Evaluation of antitumor activity of zinc selenite nano particles compared with ionic liquid in tumor-bearing animal

A thesis
Submitted for the degree of Master of Science as a partial fulfillment
for requirements of the Master of Science
in biochemistry

Submitted by

Islam Mamdouh Younis El-Diasty

B.Sc. in Chemistry/Biochemistry (2009) Mansoura University

> Faculty of Science Ain Shams University Department of Biochemistry

> > (2016)

Declaration

I declare that this thesis has been composed by myself and that the work which is recorded here in after has been done by myself. It has not been submitted for a degree at this or any other university.

Islam Younis

Dedication

I dedicate this work with all my love to my family and for all my friends and those from whom I have learned, whenever and wherever they are.

Isalm Younis

Acknowledgment

الْحَمْدُ لِلَّهِ رَبِّ الْعَالَمِينَ

Praise is to Allah, the lord of all creatures who taught man the whole science and the names of all things.

This thesis is prepared to fulfill the requirement in the Master of Science degree in the Faculty of Science in Ain Shams University. The thesis work was carried out during the period from 2012 to 2016.

This Master would never have been completed without the efforts of several people who really I appreciate their instructive support.

I am greatly indebted to **Prof. Dr. Eman I. Kandil**, Professor of Biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, Egypt and my supervisor for giving me the opportunity to perform this work under excellent working atmosphere, her encouragement, patience and interest that she showed in my work during the study period.

Special thanks are extended to **Prof. Dr. Somaya Z. Mansour**, Professor of Biochemistry, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Egypt for her participation in this study, her encouragement and her great support during my practical work. I closely worked with her throughout the all stages of this study and I found in her a decent, kind and a greatly respective person. I would like to thank her very much for her guide during the practical work.

My special thanks are due to **Prof. Dr. AbdelFattah M. Badawi**, Professor of Applied Surfactant Chemistry, Egyptian Petroleum Research Institute, Egypt for his kind supervision, moral support, instructive guidance and kind advice. Furthermore, I would like to thank him for introducing me to the topic, preparing and providing the compounds used in this study as well for the support all on the way.

Great thanks to **Prof. Dr. Adel M. Baker**, Professor of Pathology, Department of Pathology, Faculty of Veterinary Medicine, Cairo university, Egypt for his effort and assistance with histopathological studies.

I am grateful to all my colleagues at Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), especially my colleagues at the units of Physiological Chemistry and Cell Biology, for providing a good working environment, working assistance whenever necessary, and for sharing their scientific knowledge.

I would like to thank my family for their support and encouragement which enabled this work to be completed, may Allah reward them all.

Islam Younis

Content

Item No.	Subject	Page
	List of abbreviations	I
	List of figures	III
	List of tables	V
	Abstract	VII
	Introduction and aim of the work	1
	Aim of the work	6
1-	Review of literature	7
1.1-	Cancer	7
1.2-	Kidney cancer	8
1.2.1-	Renal-cell carcinoma	9
1.2.2-	Transitional-cell carcinoma	10
1.2.3-	Nephroblastoma	10
1.2.4-	Renal sarcoma	11
1.2.5-	Risk factor of kidney cancer	11
1.2.6-	Prevalence of kidney cancer	12
1.3-	Carcinogenesis	13
1.3.1-	Carcinogenicity of Diethylnitrosamine (DEN)	15
1.3.2-	Carcinogenicity of ferric-nitrilotriacetic acid (Fe-NTA)	17
1.3.2.1-	Metabolism of Fe-NTA	19
1.4-	Apoptosis	<i>20</i>
1.4.1-	Caspase cascade	22
1.4.2-	Mechanisms of apoptosis	23
1.4.3-	Caspase-3 and cancer therapy	28
1.5-	Nanotechnology	29
1.5.1-	Nanomedicine and cancer	30

Item No.	Subject	Page
1.6-	Selenium	35
1.6.1-	Selenium biochemistry and metabolism	36
1.6.2-	Selenoproteins	38
1.6.3-	Selenium Deficiency	40
1.7-	Ionic liquid	42
2-	Materials and methods	47
2.1-	Materials	<i>4</i> 7
2.1.1-	Chemical compounds	47
2.1.1.1-	Zinc selenite nanoparticles	47
2.1.1.2-	Phosphonium ionic liquid	48
2.1.1.3-	Diethylinitrosamine (DEN)	48
2.1.1.4-	Ferric-nitrilotriacetate (Fe-NTA) soluation	48
2.2-	Methods	49
2.2.1-	In vitro studies	49
2.2.1.1-	Cytotoxicity assay using crystal violet	49
2.2.2-	In vivo studies	<i>50</i>
2.2.2.1-	Determination of LD50 using experimental animals	50
2.2.2.2-	Experimental animal's treatment	52
2.2.2.3-	Collection of samples	53
2.2.2.3.1-	Blood Samples	53
2.2.2.3.2-	Kidney tissues	54
2.2.3-	Biochemical Methods	<i>55</i>
2.2.3.1-	Determination of oxidative stress	55
2.2.3.2-	Kidney function tests	66
2.2.3.3-	Determination of tumor markers	71
2.2.3.4-	Determination of molecular markers	76
2.2.4-	Histopathological studies	82
2.3-	Statistical analysis	83

Item No.	Subject	Page
3-	Results	85
<i>3.1-</i>	In vitro studies	85
3.1.1-	Viability tests	85
3.1.1.1-	Cytotoxicity assay using crystal violet	85
3.2-	In vivo studies	<i>87</i>
3.2.1-	Acute toxicity studies	87
3.2.1.1-	Determination of median lethal dose (LD50)	87
3.3-	Biochemical parameters	88
3.3.1-	Determination of oxidative stress	88
3.3.2-	Kidney function tests	110
3.3.3-	Tumor markers parameters	118
3.3.4-	Determination of molecular markers	122
3.4-	Histopathological findings	126
4-	Discussion	130
5-	Summary and Conclusion	159
6-	References	165
	Arabic Abstract	1
	Arabic Summary	3

List of abbreviations

BHK-21 baby hamster kidney

ZnSeO₃-NPs Zinc selenite Nano particles

BUN Blood urea nitrogen

CAT Catalase

CEA Carcinoembryonic antigen

CTLs Cytotoxic T-lymphocytes

DEN Diethylinitrosamine

DISC Death-inducing signaling complex

DNA Deoxyribonucleic acid

DPTA Diethylene triamine Penta acetic acid **DTNB** 5,5`dithino-bis-(2-nitrobenzoic acid)

ECM Extracellular matrix

EDTA Ethylene di amine tetra acetic acid

FAD Flavin adenine dinucleotide **FADD** FAS-associated death domain

FASL FAS Ligand

Fe-NTA Ferric-nitrilotriacetate GPx Glutathione peroxidise

GSH Reduced glutathione

HE Hematoxylin eosin stain

HSe Selenide

 IC_{50} The half maximal inhibitory concentration

ICAD Inhibitor of Caspase Activated DNase

Ils Ionic liquids

LD₅₀ Median lethal dose

LDH Lactate dehydrogenase

LPx Lipid peroxidation MDA Malonadi-aldhyde

NAD⁺ Nicotinamide adenine dinucleotide

NADH Reduced form of NAD⁺

NADP⁺ Nicotinamide adenine dinucleotide phosphate

NBT Nitro blue tetrazolium

NP Nano particlesNTA Nitrilotriacetatep53 Tumor protein 53

RCC Renal cell carcinoma

RNA Ribonucleic acid

RNS Reactive nitrogen species

ROS Reactive oxygen species

Se Selenium

SeCysSeleno-cysteineSeMSeleno-methionineSeMetSeleno-methionineSeO2Selenium di oxide

SeO₃-2 Selenite

SOD Superoxide dismutase
TBA Thiobarbituric acid
TCA Trichloroacetic acid

TEM Transmission electron microscopy

TRADD TNFR-associated death domain

TRAF-2 TNFR-associated factor-2

VACSERA The holding company for biological products and

vaccines

VEGF-A Vascular endothelial growth factor-A

List of figures

Figure	Title	Page
Figure (1)	Reactive oxygen species (ROS) and their role in the development of human cancer	15
Figure (2)	Hallmarks of the apoptotic cell death process	20
Figure (3)	Main apoptotic pathways: an overview of the extrinsic and intrinsic apoptotic pathways and their elements	26
Figure (4)	Schematic representation of apoptotic events	27
Figure (5)	Proposed metabolic pathway for biologically important Se comounds.	38
Figure (6)	Cysteine and Selenocysteine	39
Figure (7)	Cellular mechanism of glutathione peroxidase	40
Figure (8)	(8a): Zinc selenite nanoparticles using transmission electron microscope	47
	(8b): Trihexyl (tetradecyl) phosphonium chloride ionic liquid structural formula	48
Figure (9)	Standard curve of rat CEA	74
Figure (10)	Representative standard curve for caspase-3 activity	80
Figure (11)	Cytotoxic activity of ZnSeO ₃ -NPs against BHK-21 cell line	86
Figure (12)	Cytotoxic activity of IL against BHK-21 cell line	87
Figure (13)	Percent change from control of GSH of blood and kidney for different groups	91
Figure (14)	Percent change from control of GPx of blood and kidney for different groups	95
Figure (15)	Percent change from control of SOD of blood and kidney for different groups.	99
Figure (16)	Percent change from control of CAT of blood and kidney for different groups	103
Figure (17)	Percent change from control of LPx of plasma and kidney for different groups	107
Figure (18)	Percent change from control of blood antioxidants and plasma LPx levels under different	108
Figure (19)	Percent change kidney tissue homogenates antioxidants and LPx levels under different treatment conditions compared to carcinogen group	109
Figure (20)	Percent change from control of plasma creatinine and urea for different groups	113

Figure (21)	Percent change from control of plasma potassium and total protein for different groups	116
Figure (22)	Percent change of plasma creatinine, urea, potassium and total protein levels under different treatment conditions	117
Figure (23)	compared to carcinogen group Percent of change from control of plasma CEA and LDH	120
	levels for different groups	
Figure (24)	Percent change of plasma CEA and LDH levels under different treatment conditions compared to carcinogen	121
	group	
Figure (25)	Percent change from control of caspase-3 level for different	124
Figure (26)	groups Percent change caspase-3 level under different treatment conditions compared to carcinogen group	125
Figure (27)	Kidney section of control rats	128
Figure (28)	Kidney section of ZnSeO ₃ -NPs treated rats	128
Figure (29)	Kidney section of IL treated rats	128
Figure (30)	Kidney section of DEN and Fe-NTA treated rats	129
Figure (31)	Kidney section of ZnSeO ₃ -NPs treated rats after intoxication with DEN and Fe-NTA.	129
Figure (32)	Kidney section of IL treated rats after intoxication with DEN and Fe-NTA	129

List of tables

Table	Title	Page
Table (1)	Serial dilution of standards for caspase-3	79
Table (2)	Cytotoxic activity of different concentrations of ZnSeO ₃ -NPs on BHK-21 cell line	85
Table (3)	Cytotoxic activity of different concentrations of IL on BHK-21 cell line	86
Table (4)	Median lethal dose (LD50) of ZnSeO ₃ -NPs and IIs	87
Table (5)	Statistical analysis (ANOVA) for blood GSH level (mg/dL) in the different groups	90
Table (6)	Statistical analysis (ANOVA) for kidney tissue homogenate GSH level (mg/g wet tissue) in the different groups	90
Table (7)	Statistical analysis (ANOVA) for blood GPx level (µmol oxidized GSH/ min/ml) in the different groups	94
Table (8)	Statistical analysis (ANOVA) for Kidney tissue homogenate GPx level (µmol oxidized GSH/ min/g wet tissue) in the different groups	94
Table (9)	Statistical analysis (ANOVA) for blood SOD level ($\mu g/ml$) in the different groups	98
Table (10)	Statistical analysis (ANOVA) for kidney tissue homogenate SOD level (µg/g wet tissue) in the different groups	98
Table (11)	Statistical analysis (ANOVA) for blood CAT level (µmol/ml) in the different groups	102
Table (12)	Statistical analysis (ANOVA) for kidney tissue homogenate CAT level (µmol/g wet tissue) in the different groups	102
Table (13)	Statistical analysis (ANOVA) for plasma LPx level (mmol/L) in the different groups	106
Table (14)	Statistical analysis (ANOVA) for kidney tissue homogenate LPx level (µmol/ g wet tissue) in the different groups	106
Table (15)	Statistical analysis (ANOVA) for plasma creatinine level (mg/ dL) in the different groups	112
Table (16)	Statistical analysis (ANOVA) for plasma urea level (mg/dL) in the different groups	112
Table (17)	Statistical analysis (ANOVA) for plasma potassium (mmol/l) in the different groups	115
Table (18)	Statistical analysis (ANOVA) for plasma total protein level (g/ dL) in the different groups	115
Table (19)	Statistical analysis (ANOVA) for plasma CEA level (ng/ml) in the different groups	119