

AIN SHAMS UNIVERSITY FACULTY OF ENGIEERING

Public Works Department

"Techno – economic Comparison among Pipe Materials used in Water Networks"

A Thesis Submitted in Partial Fulfillment for the Requirements of the

Degree of Master of Science in Civil Engineering

(Public Works - Sanitary Engineering)

Prepared By

Marwa Thabet Abdel Aleem Ahmed

B.Sc. of Civil Engineering

(Public Works) Assiut University, 2009

Supervised by

Prof. Dr. Mohammed Hassan Abdel Razik

Professor of Sanitary & Environmental
Engineering
Ain Shams University

Dr. Mohammed Sobhy Abdel Rahman Associate Professor of Sanitary& Environmental

Engineering
Ain Shams University

Dr. Hossam Mostafa Hussein

Assistant Professor of Sanitary& Environmental Engineering Ain Shams University

Cairo - 2018

AIN SHAMS UNIVERSITY

FACULTY OF ENGIEERING

Public Works Department

"Techno – economic Comparison among Pipe Materials used in Water Networks"

Prepared By

Marwa Thabet Abdel Aleem Ahmed

B.Sc. of Civil Engineering, Assiut University, 2009

This thesis for M.SC. degree had been approved by:

Name Signature

Prof. Dr. Mohamoud Abdel Shafi Al-Sheikh

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Monofeya University

Prof. Dr. Hamdy Ibrahim Ali

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University

Prof. Dr. Mohammed Hassan Abdel Razik

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University

DEDICATION

I wish to dedicate this work to who suffered to educate, prepare, build capacity and help myself to be as I am,

TO

MY HUSBAND

MY FATHER & MY MOTHER

For their encouragement and support to complete this work.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering. The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University.

No part of the thesis has been submitted for a degree or qualification at any other university or institution. The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Date 2/1/2018

Signature

Marwa Thabet Abd Aleem

ACKNOWLEDGMENT

First of all, *thanks to God* for his grace and mercy, and for giving me the effort to complete this work.

It is an honor to work under the supervision of eminent professors, who I appreciate their whole hearted support and immense facilities. To them, I owe more than I can record.

The candidate is deeply gratefully to my supervisors *Prof. Dr. Mohamed Hassan Abdel Razik, Dr. Mohamed Sobhy and Dr. Hosam Mostafa* Professors of Sanitary & Environmental Engineering, Faculty of Engineering, AinShams University, for their guidance, faithful supervision, helpful suggestions, great support, cooperation and help in thesis.

Last but not least, I would like to thank *my Father, my Mother, my Friends* for their invocation and encouragement to finish this thesis. Special thanks to *my husband* for his support, kindness and help.

ABSTRACT

Name: Marwa Thabet Abdel Aleem

Title: Techno-economic Comparison among Pipe Materials used in Water

Networks

Institute: Faculty of Engineering, Ain Shams University

Specialty: Public Works, Sanitary and Environmental Engineering

Currently different pipe materials are used in a variety of applications in municipal water networks such as DI, ST, PSC, GRP, HDPE, and uPVC. Recently, many problems have emerged because of the use of an inappropriate pipe material in a certain application. The objective of this research is to develop a flow chart that can be used for the selection of the most appropriate pipe material in a certain application of water networks taking into consideration design parameters, local experience, environmental conditions, construction, operation, maintenance, and financial evaluation. Technical evaluation considers structural properties, environmental conditions, construction, operation, and maintenance. The impact of these parameters varies from project to another depending on project severity factor. Financial evaluation considers the cost of supply and installation for all the acceptable pipe materials.

Keywords: Pipe Selection, Ductile Iron Pipe, GRP Pipe, HDPE Pipe, uPVC Pipe, ST Pipe

Supervisors:

Prof. Dr. Mohammed Hassan Abdel Razik

Dr. Mohammed Sobhy Abdel Rahman

Dr. Hossam Mostafa Hussein

Faculty of Engineering
Public Works
Department

Summary of M.Sc. Thesis Prepared by Marwa Thabet Abdel Aleem Ahmed

Titled

''Techno – economic Comparison among Pipe Materials Used in Water Networks''

Nowadays, the most commonly used pipe materials in water networks are Ductile Iron (DI), Steel (ST), Pre-Stressed Concrete (PSC), Glass Reinforced Plastic (GRP), High-Density Polyethylene (HDPE), and unPlasticized Polyvinyl Chloride (uPVC).

A flow chart is proposed for the selection of the optimal pipe material in a certain application of water supply projects. The process is carried out in four steps as follows:

- **Step (1) Exclusion Diagram** is developed to exclude the pipe materials that cannot be used in a certain application, based on design parameters (diameter and pressure) and local experience.
- **Step (2) Technical Evaluation** is conducted among acceptable pipe materials, taking into consideration: structural properties, environmental conditions, construction, operation, and maintenance. The technical score is adjusted for each project according to its circumstances.
- **Step (3) Financial Evaluation** is conducted among acceptable pipe materials taking into consideration the cost of supply and installation.
- **Step (4) Overall Evaluation**, technical and financial evaluations are merged for the final selection of the appropriate pipe material for a certain application. Two methods are presented for merging: Method 1 assumes certain merging

ratio (e.g. 70% technical and 30% financial), and in Method 2 the financial score is divided by the technical score.

The proposed method has been applied on three case studies (transmission pipeline, main distribution pipe, and minor distribution pipe). It is noted that pipe materials ranking varies between Method 1 (which gives preference to technical score) and Method 2 (which gives preference to financial score).

Therefore, it is important that the merging evaluation criteria be stated in the project documents, and it is generally recommended to follow Method 1 with higher weight for technical evaluation.

Supervisors:

Prof. Dr. Mohammed Hassan Abdel Razik

Professor of Environmental Engineering, Ain Shams University

Dr. Mohammed Sobhy Abdel Rahman

Associate Professor of Sanitary & Environmental Engineering, Ain Shams University

Dr. Hossam Mostafa Hussein

Assistant Professor of Sanitary & Environmental Engineering, Ain Shams University

Table of Contents

CHAPTER 1. INTRODUCTION1 1.1. General1 1.2. Problem Statement1 1.3. Study Objectives1 1.4. Criteria of Good Pipe Material1 1.5. Methodology2 1.6. Thesis Outlines2 CHAPTER 2. LITERATURE REVIEW 2.1 Introduction 2.2 International Standards 2.2.1 International Organization for Standardization (ISO) 2.2.2 Deutsches Institute für Normung (DIN) 2.2.3 American Water Works Association (AWWA) 2.2.4 European Norms (EN) 2.3 National Standards 2.3.1 Egyptian Codes 2.3.2 Ministerial Decrees 2.3.3 Egyptian Organizations 2.4 Pipe Materials Used In Water Networks

2.4.1	Ductile Iron Pipes (DI)
2.4.2	Steel Pipes (ST)
2.4.3	Pre-Stressed Concrete Pipes (PSC)
2.4.4	Glass Reinforced Plastics Pipes (GRP)
2.4.5	High-Density Polyethylene Pipes (HDPE)25
2.4.6	un Plasticized Poly Vinyl Chloride Pipes (uPVC)
	on Forms of Pipeline Failures31
CHAPTER 3. 1	METHODOLOGY 3
3.1 Introdu	3
	ion Diagram 4
3.3 Techni	ical Evaluation 4
	ical Evaluation for a Specific Project
3.4.1	Structural Properties 5
3.4.2	Environmental Conditions
3.4.3	Construction, Operation, and Maintenance
	ial Evaluation45
	l Evaluation
3.7 Compa Materi	arison between Method (1) and Method (2) for Pipe als
CHAPTER 4. 1	48 RESULTS AND DISSCUSSION
4.1 Genera	49 al 49

4.2 Case Study (1)	50
4.3 Case Study (2)	
4.4 Case Study (3)	
CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS	
5.1 General	
5.2 Conclusion	
5.3 Recommendations	2
5.4 Future Studies	
REFERENCES	55

List of Figures

2-1: Initial Technical Selection for Trunk Mains Pipe Materials	7
2.2: Welded and Rubber- Gasketed Field Joints for ST Pipes	,
3.1: Pipe Selection Flow Chart	3
3.2: Relation between S _{adj} and X for Pipe Materials	е
3.3: Technical Scores for Lifetime of Pipe Materials in a Specific Project	
3.4: Technical Scores for Resistance to Internal Pressures of Pipe Materials	
3.5: Technical Scores for Resistance to External Pressures of Pipe Materials	
3.6: Technical Scores for Resistance to Shock Loads of Pipe Material	S
3.7: Technical Scores for Resistance to Soil Corrosion of Pipe Materials	
3.8: Technical Scores for Resistance to GW Corrosion of Pip Materials	рe
3.9: Technical Scores for Resistance to Stray Currents Corrosion of Pipe Materials	
3.10: Technical Scores for Pipe Materials with Insufficient Pipe Trench	
3.11: Technical Scores for the Need to Thrust Blocks of Pipe Materials	
3.12: Technical and Financial Comparison among Pipe Materials	
3.13: Pipe Material General Score at Different Merging Ratios	
4.1 : Exclusion Diagram for Case Study (1	
4.2: Technical and Financial Comparison among Pipe Materials for Case Study (1)	

4.3: Exclusion Diagram for Case Study (2)	54
4.4: Technical and Financial Comparison among Pipe Materials for Case Study	
(2)	.56
4.5: Exclusion Diagram for Case	
(3)	58
4.6: Technical and Financial Comparison among Pipe Materials for Case Study	60
(3)	00

List of Tables

2-1: Advantages and Limitations of DI pipes	7
2-2: Sizes of DI Pipes	7
2-3: Available Lengths for DI Pipes	7
2-4: Maximum Values of PFA, PMA and PEA for ClassK9 Spigot and Socket Dipe to BS EN 545:1994 (Examples)	
2-5: Preferred Pressure Class and Allowable Working Pressure for DI pipes	9
2-6: Allowable Pressures of Components with Joints for the Preferre Classes.	
2-7: Diametric Stiffness and the Allowable Deflection of Class25 Pip (Examples)	
2-8: Joint Types of DI Pipes for Different Standards	1
2-9: Recommended Coatings for DI pipes	1
2-10: Recommended Linings for DI pipes	3
2-11: Advantages and Limitations of ST pipes14	4
2-12: Sizes of ST pipes for Different Standards	4
2-13: Joint Types of ST pipes for Different Standards	5
2-14: Recommended Coatings for ST Pipes	6
2-15: Recommended Linings for ST Pipes	8
2-16: Advantages and Limitations of PSC Pipes	9
2-17: Pipe Sizes of PSC for Different Standards	0
2-18: Recommended Coatings for PSC Pipes	1
2-19: Recommended Linings for PSC pipes	2
2-20: Advantages and Limitations of GRP Pipes	2
2-21: GRP Sizes for Different Standards	2
2-22: GRP Pressure Ratings for Different Standards	3
2-23: Advantages and Limitations of HDPE Pipes25	5
2-24: HDPE Sizes for Different Standards25	5
2-25: Maximum Rated Working Pressure for PE diameters from 90 to 100 mm	0

2-26: Design Deflection for PE Pressure Pipe	27
2-27: Joint Types of HDPE pipes for Different Standards	27
2-28: Advantages and Limitations of uPVC Pipes	28
2-29: uPVC Sizes for Different Standards.	28
2-30: Lengths of uPVC Pipes	28
2-31: Methods to Define Pressure Rating for Thermoplastic Pipes	29
2-32: Pressure Ratings of uPVC Pipes for Different Standards	30
2-33: uPVC Joints for Different Standards	31
3-1: Exclusion Diagram Parameters.	34
3-2: Technical Evaluation Scoring System	34
3-3: General Technical Evaluation Parameters.	36
3-4: Aggressiveness of Soil and Groundwater	40
3-5: Limits of Chemical Compound Ratios in the Soil	42
3-6: Financial Evaluation Scoring System	45
3-7: Application of Method (1)	47
3-8: Application of Method (2)	48
3-9: Comparison between Method (1) and Method (2)	48
4-1: Input Data for Different Case Studies	49
4-2: Technical Evaluation of pipe Materials for Case Study (1)	51
4-3: Financial Evaluation for Case Study (1)	52
4-4: Application of Method (1) at (70, 30) for Case Study (1)	52
4-5: Application of Method (2) for Case Study (1)	53
4-6: Technical Evaluation of pipe Materials for Case Study (2)	55
4-7: Financial Evaluation for Case Study (2)	56
4-8: Application of Method (1) at (70, 30) for Case Study (2)	56
4-9: Application of Method (2) for Case Study (2)	57
4-10: Technical Evaluation of pipe Materials for Case Study (3)	59
4-11: Financial Evaluation for Case Study (3)	60
4-12: Application of Method (1) at (70, 30) for Case Study (3)	60
4-13: Application of Method (2) for Case Study (3)	61