

Ain Shams University Faculty of Engineering

OPTIMUM DESIGN OF LONG-SPAN BRIDGES

BY

MOHAMED AHMED HASSAN HILAL

B Sc. Civil Engineering-Ain Shams University (1991) M. Sc. Civil Engineering-Ain Shams University (1998)

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN CIVIL ENGINEERING - STRUCTURAL ENGINEERING

SUPERVISED BY

PROF. DR. MOSTAFA KAMEL ZIDAN

Professor of Structural Engineering
Ain Shams University

PROF. DR. M. NOOR FAYED DR. MOHSIN F. SHUAIB

Prof. of Structural Engineering Ain Shams University Lecturer of Structural Engineering Menofia University

CAIRO - EGYPT 2007

EXAMINERS COMMITTEE

Nam	Signature	
1.	Prof. Dr. Ahmed Abd El-Hameed	
	Dept. of Civil Engineering	
	Drexell University- U.S.A.	
2.	Prof. Dr. Hassan Ibrahim Hegab	
	Professor of Structural Engineering	
	Faculty of Engineering	
	Ain Shams University	
3.	Prof. Dr. Mostafa Kamel Metwaly Zidan	
	Professor of Structural Engineering	
	Faculty of Engineering	
	Ain Shams University	
4.	Prof. Dr. Mohamed Noor El-Deen Saad Fayed	
	Professor of Structural Engineering	
	Faculty of Engineering	
	Ain Shams University	

INFORMATION ABOUT THE RESEARCHER

Name MOHAMED AHMED HASSAN HILAL

Date of Birth June 2nd, 1969.

Place of Birth Cairo.

Qualification - B.Sc. Degree in Civil Engineering – Structural Division – General Grade "Excellant with Honor Degree", Faculty of Engineering, Ain Shams University, July 1991.

> M.Sc. Degree in Civil Engineering – Structural Division, Faculty of Engineering, Ain Shams University, Aug. 1998.

Current Job Senior Structural Engineer – Structural Dept.

DAR AL-HANDASAH (SHAIR AND PARTNERS)

STATEMENT

This dissertation is submitted to Ain Shams University for the

requirement of the **Degree of Doctor of Philosophy** in Civil Engineering

- Structural Engineering.

The work included in this thesis was carried out by, the author in

the Department of Civil Engineering (Structural Division), Ain Shams

University, from 2000 to 2007.

No part of this thesis has been submitted for a degree or a

qualification at any other University or Institution.

Date : June 2007

Name : MOHAMED AHMED HASSAN HILAL

Signature : _____

ACKNOWLEDGEMENT

I wish to express my sincere thanks to *Prof. Dr. Mostafa Kamel Zidan* for his direct supervision, generous and continuous support, guidance, encouragement and precise advice to perform this research.

In addition, I am very thankful to *Prof. Dr. Mohamed Nour El-Din Fayed* for his kind supervision, generous and constructive criticism, encouragement and cooperation to the full degree during all stages of this work.

I would like to express my great thanks also to *Dr. Mohsin Fathy Shuaib* for his kind supervision, throughout the work.

Finally, the author dedicates this thesis to his *Mother*, *Uncle*, *Wife*, *and Sisters* for their continuous encouragement, and fruitful care.

AIN SHAMS UNIVERSITY - FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT-STRUCTURAL DIVISION

Abstract of the Doctor of Philosophy Thesis Submitted by:

Eng. MOHAMED AHMED HASSAN HILAL

Title of the thesis

OPTIMUM DESIGN OF LONG-SPAN BRIDGES

Registration date: 10/3/2003 Examination date: 23/6/2007

Supervisors

Prof. Dr. Mostafa Kamel Metwaly Zidan Prof. Dr. Mohamed Noor El Deen Saad Fayed Dr. Mohsin F. Shuaib

ABSTRACT

This thesis deals with the optimum design of long-span bridges. The thesis introduces an extensive survey of the published work on general concepts, history, and different structural types of long-span bridges. An optimization procedure has been proposed for the analysis and design of cable-stayed and suspension bridges, for their minimum weight. The analysis is based on unconstrained minimization of the total potential energy of the structure by conjugate gradient technique. A computational procedure for determining the initial shape of cable-stayed, and suspension bridges, under the action of dead load of the girder and pretension in the inclined cables, is presented. The structure is designed through element level and structural level optimization, using optimality criteria method for member resizing. A proposed optimum geometry design is achieved to satisfy the constraints on both the member and geometrical design variables. A hybrid method is proposed, using the combination of a derived optimality criterion method and the suggested generalized compound scaling algorithm, in order to overcome the associated difficulties in the geometry optimization of the relatively large structures, like the cable-stayed and suspension bridges, which have an increased number of design variables and additional degrees of nonlinearity in the numerical behaviour. This algorithm produces an efficient and a stable optimum geometry design method. Numerical investigations are performed to verify both the efficiency and the mathematical robustness of the proposed algorithm to reach an optimum design. Further, emphasis is made particularly on the practical applicability of the proposed optimization algorithm in engineering practice. Applications are made on different types of cable-stayed and suspension bridges, and the obtained results are analysed and discussed.

Key words: Optimum Geometry Design, Initial Shape, Cable-Stayed Bridges.

LIST OF ABBREVIATIONS

CSB = Cable-stayed bridge

SPCSB = Spread pylon cable-stayed bridge

SUSB = Suspension Bridge

OC = Optimality Criteria method

GCS = The Generalized Compound Scaling

TABLE OF CONTENTS

		Page
STATEMEN	NT	
ACKNOWL	LEDGEMENT	
ABSTRACT		
TABLE OF	CONTENTS	i
LIST OF FI	GURES	ix
	ABLES	
LIST OF AI	BBREVIATIONS	XXV
PREFACE		xxvi
CHAPTEI	R (1) INTRODUCTION	
1.1 GENER	AL	1
1.2 BRIDGE	E TYPES	2
1.2.1 R	Reinforced Concrete Bridges	2
1.2.2 S	teel and Composite Bridges	12
1.3 BRIDGE	E DECK	18
1.3.1 C	oncrete Bridge Deck	18
1.3.2 St	teel Bridge Decks	25
1.4 BASIS C	OF ANALYSIS AND DESIGN	25
1.5 LONG-S	SPAN CABLE-SUPPORTED BRIDGES	32
1.5.1 C	Cable-stayed bridges	32
1.	5.1.1 Cable arrangements	33
1.	5.1.2 Deck cross-sections	36
1.	5.1.3 <i>Tower types</i>	37
1.5.2 S	uspension bridges	37

	1.5.3	Future proposed outlines of modern cable supported	
		bridges	49
		1.5.3.1 Spread pylon cable-stayed bridges type	49
		1.5.3.2 Cable net bridges	51
16	STRI	JCTURAL ADVANTAGE OF CABLE-STAYED	
1.0		GES	54
	DKIL	OLS	J4
~~			
СН	IAP 'I	TER (2) REVIEW OF LITERATURE	
2.1	шст	ORY OF CABLE-SUPPORTED BRIDGES	56
		LYSIS OF CABLE-STAYED BRIDGES	78
		JCTURAL OPTIMIZATION	94
		Introduction	94 94
			9 4 97
		Optimality Criteria Technique	
		Approximation concepts	
		Optimum Geometry Design of Structures	
	2.3.5	The Generalized Compound Scaling	112
CH	A DT	TER (3) STATIC ANALYSIS OF THREE-	
CII		DIMENSIONAL STRUCTURES	
		BY ENERGY APPROACH	
		DI ENERGI ATIROACH	
3.1	INTR	ODUCTION	114
		RGY APPROACH	
		Mathematical Formulation	
		Gradient Methods for the Determination of Descent	
		Directions	122
3.3	NON	LINEAR ANALYSIS OF STRUCTURES BY ENERGY	
2.0		IMIZATION	139
		Assumptions	139

	3.3.3	Gradient Vector of the Total Potential Energy	142
	3.3.4	Minimization of the Total Potential Energy	143
	3.3.5	An Expression for the Step Length "S"	145
	3.3.6	Gradient Vector of the Total Potential Energy	148
	3.3.7	Case of Slackening Cables	149
	3.3.8	Equivalent Modulus of Elasticity for Cables	149
	3.3.9	Numerical ill-Conditioning and Scaling	150
	3.3.10	Convergence Criteria	151
3.4	STAB	ILITTY FINITE DEFLECTION THEORY	152
3.5	SUM	MARY OF THE ITERATIVE PROCEDURE	155
3.6	ITERA	ATIVE PROCEDURE FOR DETERMINING THE	
	INITI	AL SHAPE OF CABLE-STAYED BRIDGES	158
3.7	ILLU	STRATIVE EXAMPLES	160
CT	I A DT	ED(A) DDODOSED ODTIMIZATION	
CH	IAPT.	ER(4) PROPOSED OPTIMIZATION METHOD AND ITS NUMERICAL VERIFICATION	
CH 4.1		METHOD AND ITS NUMERICAL	168
4.1	INTR	METHOD AND ITS NUMERICAL VERIFICATION	168 169
4.1	INTR	METHOD AND ITS NUMERICAL VERIFICATION ODUCTION	
4.1	INTR OPTII	METHOD AND ITS NUMERICAL VERIFICATION ODUCTION	169
4.1	INTROOPTII 4.2.1	METHOD AND ITS NUMERICAL VERIFICATION ODUCTION	169 169
4.1	INTRO OPTII 4.2.1 4.2.2	METHOD AND ITS NUMERICAL VERIFICATION ODUCTION MALITY CRITERIA TECHNIQUE Description of the Method Dominance of Displacement Constraints	169 169 170
4.1	INTRO OPTII 4.2.1 4.2.2 4.2.3	METHOD AND ITS NUMERICAL VERIFICATION ODUCTION MALITY CRITERIA TECHNIQUE Description of the Method Dominance of Displacement Constraints Dominance of Stress Constraints Dominance of Buckling Constraints	169 169 170 173
4.1	INTRO OPTII 4.2.1 4.2.2 4.2.3 4.2.4	METHOD AND ITS NUMERICAL VERIFICATION ODUCTION MALITY CRITERIA TECHNIQUE Description of the Method Dominance of Displacement Constraints Dominance of Stress Constraints Dominance of Buckling Constraints	169 169 170 173 174
4.1 4.2	INTRO OPTII 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	METHOD AND ITS NUMERICAL VERIFICATION ODUCTION MALITY CRITERIA TECHNIQUE Description of the Method Dominance of Displacement Constraints Dominance of Stress Constraints Dominance of Buckling Constraints Optimum Design Algorithm	169 169 170 173 174 175
4.1 4.2	INTRO OPTII 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 APPR	METHOD AND ITS NUMERICAL VERIFICATION ODUCTION MALITY CRITERIA TECHNIQUE Description of the Method Dominance of Displacement Constraints Dominance of Stress Constraints Dominance of Buckling Constraints Optimum Design Algorithm Convergence Criteria and Oscillation Control	169 169 170 173 174 175 178

	4.4.2	Suggested Generalized Compound Scaling	191
	4.4.3	A Proposed Hybrid Method for Optimum Geometry	
		Design	196
	4.4.4	Summary of the Proposed Iteration Procedure for	
		Application to Cable-Stayed Bridges	198
4.5	COMF	PARATIVE EXAMPLES	202
	4.5.1	Example 1: Three-Bar Plane Truss	202
	4.5.2	Example 2: Nine-Bar Plane Truss	204
	4.5.3	Example 3: 25 Bar Space Truss	208
	4.5.4	Example 4: Six storey two bay frame	212
	4.5.5	Discussion of the Results	215
CH	IAPTI	ER (5) CABLE-STAYED BRIDGE MODELS	
			215
5.1	INTRO	ODUCTION	
5.1	INTRO MATH	ODUCTIONHEMATICAL MODELS	218
5.1	INTRO	ODUCTIONHEMATICAL MODELSOrdinary Cable-Stayed Bridge Types (CSB)	218 218
5.1	INTRO MATH	ODUCTION	218 218 218
5.1	INTRO MATH	ODUCTION	218218218220
5.1	INTRO MATH	ODUCTION	218218218220
5.1	INTRO MATH 5.2.1	ODUCTION	218218218220223
5.1 5.2	INTRO MATH 5.2.1 5.2.2 5.2.3 DESIG	ODUCTION	218 218 218 220 223 226
5.1 5.2	INTRO MATH 5.2.1 5.2.2 5.2.3 DESIG	ODUCTION	218 218 218 220 223 226
5.1 5.2 5.3	INTRO MATH 5.2.1 5.2.2 5.2.3 DESIC STAY	ODUCTION	218 218 218 220 223 226
5.1 5.2 5.3	INTRO MATH 5.2.1 5.2.2 5.2.3 DESIC STAY LOAD	ODUCTION	218 218 218 220 223 226
5.15.25.35.4	INTROMATH 5.2.1 5.2.2 5.2.3 DESIG STAY LOAD TECH	ODUCTION	218 218 218 220 223 226 232
5.15.25.35.45.5	INTROMATH 5.2.1 5.2.2 5.2.3 DESIC STAY LOAD TECH DEFLI	ODUCTION	218 218 220 223 226 232 236 237

CHAPTER (6) OPTIMUM DESIGN OF CABLE-STAYED BRIDGES

6.1	INTRO	DDUCTION	243
6.2	OPTIN	MUM DESIGN OF RADIATING TYPE CABLE-	
	STAY	ED BRIDGES	243
	6.2.1	Optimum Quantities for Different Types of Radiating	
		Bridges	250
	6.2.2	Optimum Pylon Height for Radiating Type Cable-	
		stayed Bridges	250
	6.2.3	Percentage of Deck Quantities to Total Bridge	
		Quantities	255
	6.2.4	Percentage of Pylon Quantities to Total Bridge	
		Quantities	255
	6.2.5	Percentage of Cable Quantities to Total Bridge	
		Quantities	257
	6.2.6	Weight Per Square Meter for Different Bridge Types	257
	6.2.7	Maximum Pre-Tension Force in Cables	259
	6.2.8	Tower Top Displacement	259
	6.2.9	Tower Axial Compressive Force	261
	6.2.10	Maximum Girder Moment	261
	6.2.11	Maximum Tower Moment	263
6.3	OPTIN	MUM DESIGN OF HARP TYPE CABLE-STAYED	
	BRIDO	GES	263
	6.3.1	Optimum Quantities for Different Types of Harp	
		Bridges	265
	6.3.2	Optimum Pylon Height for Harp Type Cable-Stayed	
		Bridges	265
	6.3.3	Percentage of Deck Quantities to Total Bridge	
		Quantities	276
	6.3.4	Percentage of Pylon Quantities to Total Bridge	
		Ouantities	278

	6.3.5	Percenta	age of	Cable	Quantitie	s to	Total	Bridge	
		Quantiti	es			•••••	•••••		278
	6.3.6	Weight	Per Squa	re Mete	r for Diffe	rent Br	idge Ty	pes	280
	6.3.7	Maximu	ım Pre-T	ension F	Force in Ca	ıbles	•••••		280
	6.3.8	Tower T	Top Disp	lacemen	t		•••••		282
	6.3.9	Tower A	Axial Co	mpressiv	e Force		•••••		282
	6.3.10	Maximu	ım Girde	er Mome	nt		•••••		284
	6.3.11	Maximu	ım Towe	er Mome	nt		•••••		284
6.4	OPTIN	ИUM D	ESIGN	OF SPR	EAD PY	LON T	YPE C	ABLE-	
	STAY	ED BRII	OGES				•••••		286
	6.4.1	Pylon H	eight as	a Design	Variable		•••••		286
		6.4.1.10	ptimum	quantitie	es for sprea	ad pylo	n cable	- stayed	
		b	ridges (S	SPCSB)	with varial	ble pylo	on heigh	1t	286
		6.4.1.2	Optimu	m pylo	n height	for ((SPCSB) with	
			variable	pylon h	eight		•••••		300
		6.4.1.3	Percent	age of	deck quan	ntities	to total	bridge	
			quantiti	es for	(SPCSB)	with	variable	pylon	
			height.				•••••		300
		6.4.1.4	Percent	age of p	ylon quai	ntities	to total	bridge	
			quantiti	es for	(SPCSB)	with	variable	pylon	
			height.			•••••	•••••		302
		6.4.1.5	Percent	age of o	cable quar	ntities	to total	bridge	
			quantiti	es for	(SPCSB)	with	variable	pylon	
			height.				•••••		302
		6.4.1.6	Weight	per sq	uare mete	er for	(SPCSF	3) with	
			variable	pylon h	eight	•••••	•••••		304
		6.4.1.7	Maxim	um pre	-tension	force	in cab	oles of	
			(SPCSE	3) with v	ariable py	lon hei	ght		304
		6.4.1.8	Tower	top dis	splacemen	t of ((SPCSB) with	
			variable	pylon h	eight		•••••		304

	6.4.1.9	Tower axial compressive force of (SPCSB)	
		with variable pylon height	307
	6.4.1.10	Maximum girder moment of (SPCSB) with	
		variable pylon height	307
	6.4.1.11	Maximum tower moment of (SPCSB) with	
		variable pylon height	307
6.4.2	Spread A	Angle as a Design Variable	310
	6.4.2.1	Optimum quantities for spread pylon cable-	
		stayed bridges (SPCSB) with variable spread	
		angle	310
	6.4.2.2.	Optimum spread angle for (SPCSB)	326
	6.4.2.3	Percentage of deck quantities to total bridge	
		quantities for (SPCSB) with variable spread	
		angle	326
	6.4.2.4	Percentage of pylon quantities to total bridge	
		quantities for (SPCSB) with variable spread	
		angle	326
	6.4.2.5	Percentage of cable quantities to total bridge	
		quantities for (SPCSB) with variable spread	
		angle	329
	6.4.2.6	Weight per square meter for (SPCSB) with	
		variable spread angle	329
	6.4.2.7	Maximum pre-tension force in cables of	
		(SPCSB) with variable spread angle	331
	6.4.2.8	Tower top displacement of (SPCSB) with	
		variable spread angle	331
	6.4.2.9	Tower axial compressive force of (SPCSB)	
		with variable spread angle	331
	6.4.2.10	Maximum girder moment of (SPCSB) with	
		variable spread angle	334

6.4.2.11 Maximum tower moment of (SPCSB) with	
variable spread angle	34
6.5 OPTIMUM DESIGN FOR THE SUEZ CANAL CABLE-	
STAYED BRIDGE	34
6.6 COMPARISON OF CABLE QUANTITIES USING	
APPROXIMATE DESIGN FORMULAE	39
CHAPTER (7) COMPARISON BETWEEN THE	
SUSPENSION, CABLE-STAYED,	
AND THE SPREAD-PYLON	
CABLE-STAYED BRIDGE	
7.1 INTRODUCTION	
7.2 MATHEMATICAL MODELS	
7.2.1 Model (A) - Radiating Type Cable-Stayed Bridge 34	46
7.2.2 Model (B) - Harp Type Cable-Stayed Bridge 34	46
7.2.3 Model (C) - Spread Pylon Cable-Stayed Bridge 34	46
7.2.4 Model (D) - Suspension Bridge	49
7.3 RESULTS AND DISCUSSION	49
7.4 COMPARISON WITH APPROXIMATE DESIGN	
FORMULAE FOR CABLE QUANTITIES 35	58
CHAPTER 8 SUMMARY AND CONCLUSIONS 36	64
CIMITER O BOMMANT AND CONCEDED ON S 30	J -T
REFERENCES 37	73
ADDENDIN A LIGH OF LONG CDAN DRINGES	
APPENDIX A LIST OF LONG SPAN BRIDGES	
AROUND THE WORLD A	- I
APPENDIX B OPTIMUM DESIGN ALGORITHM	
SOLVED EXAMPLE B.	_1