Study of Fibroscan in Nonalcoholic Fatty Liver Disease in Obese Children and Adolescents

Thesis

Submitted For Partial Fulfillment of Master Degree in Paediatrics

By

Roba Maher Ahmed Elgawesh

M.B, B.Ch, 2012

Under Supervision Of

Prof. Dr. Zeinab Anwar Elkabbany

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Prof. Dr. Rasha Tarif

Professor of Pediatrics
Faculty of Medicine - Ain shams university

Dr. Aisha Alsharkawy

Lecturer of Tropical Medicine
Faculty of Medicine - Cairo University

Faculty of Medicine Ain Shams University 2017

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Zeinab Anwar Elkabbany** Professor of Pediatrics faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Rasha Tarif** Professor of Pediatrics, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Really I can hardly find the words to express my gratitude to **Dr. Aisha Alsharkawy**, Lecturer of Tropical Medicine Faculty of Medicine, Ain Shams University for his continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.

Especially I am obliged to **Dr Eman Abdelrahman Ismael**, Consultant of Clinical Pathology, Ain Shams University who offered great help, support, kind advise and professional experience for completion of this work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures.	vi
Abstract	xi
Introduction and Aim of the Work	1
Review of Literature	5
Chapter 1	
* Childhood Obesity and Nonalcoholic Fatty liv	
Chapter 2	3
* Fibroscan	26
Chapter 3	
* Serum visfatin	35
Subjects and Methods	41
Results	51
Discussion	97
Limitation of the Study	120
Summary	121
Conclusion	125
Recommendations	126
References	127
Arabic Summary	

List of Abbreviations

ALT : Alanine transaminase ANOVA : Analysis of Variance

APTT : Activated partial thromboplastin time

AST : Aspartate aminotransferase

AUC : Area under the curve BMI : Body mass index

CAP : Controlled Attenuation Parameter

CDC : Centers for Disease Control

CT : Computed tomography

dSAT : Deep subcutaneous adipose tissue

ELF : Enhanced Liver Fibrosis

ELISA : Enzyme linked immune sorbent assay

GGT : G-glutamyl transpeptidase

HA : Hyaluronic acid

HDL : High density lipoprotein

HOMA-IR: Homeostasis model assessment for insulin

resistance

HRP : Horseradish Peroxidase

INR : International normalized ratio

IQR : Interquartile rangeKLF 6 : Kruppel-like factor 6LDL : Low density lipoprotein

LSM : Liver stiffness measurement NAFLD : Non-alcoholic fatty liver disease

NAS : NAFLD activity score OSA : Obstructive sleep apnea

ox-LDL : Oxidized low-density-cholesterol

PB : Peripheral blood

ROC : Receiver operating characteristic

List of Abbreviations (Cont.)

SAFETY: Screening ALT for Elevation in

Today's Youth

SAT : Subcutaneous adipose tissueSDS : Standard deviation score

TBARS : Thiobarbituric acid-reacting substance

TE : Transient Elastography
TE : Transient Elastography
TIMP-1 : Metalloproteinase 1
TNF : Tumor necrosis factor

US : Ultrasound

VAT : Visceral adipose tissue WHO : World health organization

List of tables

Table	Title	Page
1	Demographic data and anthropometric	52
	measures of the studied obese patients	
	and healthy controls	
2	Blood pressure values of the studied	54
	obese patients	
3	Laboratory characteristics among the	55
	studied obese patients	
4	Fasting lipid profile among the studied	56
	obese patients	
5	Frequency of dyslipidemia among the	56
	studied obese patients	
6	Serum visfatin levels among the studied	57
	obese patients and healthy controls	
7	Hepatic abnormalities among the studied	58
	obese patients	
8	Liver span by abdominal ultrasound	58
	among the studied obese patients	
9	Results of transient elastography among	60
	the studied obese patients	
10	Steatosis by elevated liver enzymes or	61
	CAP among the studied obese patients	
11	Comparison of demographic data and	62
	anthropometric measures among obese	
	patients with or without NAFLD	
12	Comparison of demographic data and	62
	anthropometric measures among obese	
10	patients with or without NAFLD	
13	Comparison of blood pressure values	65
	among obese patients with or without	
	NAFLD	

List of tables (Cont.)

Table	Title	Page
14	Comparison of laboratory variables among obese patients with or without NAFLD	66
	Comparison of fasting lipid profile among obese patients with or without NAFLD	69
15	Comparison of demographic data and anthropometric measures among obese patients with and without steatosis by elevated liver enzymes or CAP	71
16	Comparison of blood pressure values among obese patients with and without steatosis by elevated liver enzymes or CAP	74
17	Comparison of laboratory variables among obese patients with and without steatosis by elevated ALT or CAP	75
18	Comparison of fasting lipid profile among obese patients with and without steatosis by elevated liver enzymes or CAP	77
19	Serum visfatin levels in relation to clinical and radiological characteristics of obese patients	79
20	Liver stiffness and CAP in relation to clinical and radiological characteristics of obese patients	84
21	Receiver Operating Characteristic (ROC) curve analysis of liver stiffness among obese patients with and without NAFLD	87
22	Liver stiffness and CAP in relation to dyslipidemia of obese patients	89

List of tables (Cont.)

Table	Title	Page
23	Correlation between liver stiffness and	91
	CAP and the studied clinical variables	
	among obese patients	
24	Correlation between liver stiffness and	93
	CAP and the studied laboratory and	
	radiological variables among obese	
	patients	

List of Figures

Eio	Tide	Daga
Fig.	Title	Page
1	Body mass index-for-age percentiles,	6
	boys, 2 to 20 years, CDC growth charts:	
	United States	
2	Body mass index-for-age percentiles,	6
	girls, 2 to 20 years, CDC growth charts:	
	United States	
3	NAFLD spectrum	10
4	Morphological and cellular aspec ts of	14
	sSAT, dSAT, and VAT in obesity	
5	A)macrovesicular steatosis hepatocyte	16
	with predominantly asingle large sized	
	fat droplet.B) macrovesicular steatosis	
	hepatocyte with multiple small to	
	medium sized fat droplet.C)spotty	
	necrosis :asmall clusters of small	
	lymphophocytes and histocyte replaced	
	hepatocytes	
6	D)hepatocellularballooning :swollen	18
	hepatocyte exhibit rarefraction of	
	hepatocytic cytoplasm and clumped	
	strands of intermediate filaments.some	
	cfilaments. Some clumped strands of	
	intermediate filaments are qualified as	
	Mallory-Denk bodies. E) Characteristic	
	loss of cytoplasmic expression in	
	ballooned hepatocytes, whereas residual	
	immunoreactivity is confined to their	
	Mallory-Denk bodies. F) Centrizonal	
	and perisinusoidal fibrosis [Sirius red	
	stain	
7	NAFLD GRADES	24

Fig.	Title	Page
8	Examples of liver stiffness measurements	29
9	Correlation between LSM and fibrosis stage	30
10	This is how results appear on screen of fibroscan	34
11	Diagram summarizing the main reported actions of visfatin/Nampt/PBEF in the cardiovascular system	36
12	Visfatin serum level of eutrophic and obese children according to literature	40
13	BMI SDS among obese patients and healthy controls	53
14	Serum visfatin levels among the studied obese patients and healthy controls	57
15	NAFLD grades among obese patients	59
16	Fibroscan results among an obese patient with Metavir F2 (7.2 kPa)	61
17	Comparison of age among obese patients with and without NAFLD	63
18	BMI SDS among obese patients with and without NAFLD	64
19	Fasting blood glucose levels among obese patients with or without NAFLD	67
20	ALT levels among obese patients with or without NAFLD	68
21	Incidence of elevated ALT levels among obese patients with or without NAFLD	68
22	Fasting lipid profile among obese patients with or without NAFLD	70

Fig.	Title	Page
23	Incidence of dyslipidemia among obese patients with or without NAFLD	70
24	Weight SDS among obese patients with or without steatosis according to elevated liver enzymes or CAP values	72
25	BMI SDS among obese patients with or without steatosis according to elevated liver enzymes or CAP values	73
26	Waist circumference among obese patients with or without steatosis according to elevated liver enzymes or CAP values	73
27	AST levels among obese patients with and without steatosis	76
28	Fasting lipid profile among obese patients with or without steatosis according to elevated liver enzymes or CAP values	78
29	Frequency of dyslipidemia among obese patients with or without steatosis according to elevated liver enzymes or CAP values	78
30	Serum visfatin levels among obese patients with normal or elevated ALT levels	80
31	Serum visfatin levels among obese patients with and without NAFLD	81
32	Serum visfatin levels in relation to NAFLD grades among obese patients	81
33	Serum visfatin levels among obese patients with combined NAFLD and elevated ALT levels	82

Fig.	Title	Page
34	Serum visfatin levels in relation to METAVIR score among obese patients	82
35	Serum visfatin levels in relation to the stage of steatosis by CAP among obese patients	83
36	Liver stiffness among the studied obese patients with and without hepatomegaly and NAFLD	85
37	Liver stiffness in relation to NAFLD grades among the studied obese patients	85
38	CAP values in relation to NAFLD and/or elevated ALT among the studied obese patients	86
39	Receiver Operating Characteristic (ROC) curve analysis of liver stiffness among obese patients with and without NAFLD	87
40	Cut off value of liver stiffness between obese patients with and without NAFLD (>4.6 KPa)	88
41	Liver stiffness among the studied obese patients with total cholesterol above or lower than 170 mg/dL	90
42	CAP among the studied obese patients with total cholesterol above or lower than 110 mg/dL	90
43	Positive correlation between liver stiffness and age among obese patients	92
44	Positive correlation between CAP and age among obese patients	92

Fig.	Title	Page
45	Positive correlation between liver	94
	stiffness and LDL-cholesterol among	
	obese patients	
46	Positive correlation between liver	95
	stiffness and liver span among obese	
	patients	
47	Positive correlation between liver	95
	stiffness and CAP among obese patients	
48	Positive correlation between CAP and	96
	ALT among obese patients	
49	Positive correlation between CAP and	96
	LDL cholesterol among obese patients	

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide. Obesity is associated with an increased risk of NAFLD. FibroScan, or transient elastography (TE), non-invasively assesses liver fibrosis and presents comparable performance to liver biopsy to predict liver-related outcomes in patients with chronic liver diseases. Controlled attenuation parameter (CAP) is a novel parameter for detection of hepatic steatosis. TE with CAP is a viable alternative to ultrasonography both as an initial assessment and during follow-up of patients with NAFLD. Visfatin is a novel adipokine originally described to be produced predominantly by visceral fat tissue. Aim: To assess the prevalence of hepatic abnormalities in obese children and adolescents by transient elastography using liver stiffness and CAP and evaluate their relation to clinical and laboratory variables as well as serum visfatin levels. **Methods:** Eighty children and adolescents with simple obesity (42) males and 38 females) were compared with 40 healthy controls and studied stressing on blood pressure and auxological measures (body mass index [BMI] and waist/hip ratio). Abdominal ultrasound was done for assessment of the liver. Liver stiffness and CAP measurements were performed for all patients using FibroScan. Fasting lipid profile, fasting blood glucose (FBG) and insulin level, liver and kidney functions and coagulation profile were assessed. Data for serum vsiaftin levels were obtained from patients' files. **Results:** As regards hepatic abnormalities among the studied obese patients, 16 (20%) patients had elevated alanine aminotransferase (ALT), 54 (67.5%) had hepatomegaly and 31 (38.8%) had NAFLD by abdominal ultrasound while 9 (11.2%) had both NAFLD and elevated ALT. It was found that 61.2% of the studied obese patients had NAFLD grade 0 (i.e. normal echogenicity of the liver), 36.2% had NAFLD grade 1 and 2.5% had NAFLD grade 2 while none of the patients had grade 3. According to liver stiffness, 81.2% of patients had F0, 12.5 % had F1, 2.5% had F2 and another 2.5% had F3 while none had F4. Using CAP, 43.8% had S0 (no stestosis), 23.8%, 13.8% and 17.5% had S1, S2 and S3, respectively. According to either CAP or elevated ALT was observed in 47 patients; only 3 of them had S0 by CAP but their ALT was elevated. Obese patients with NAFLD had higher age, weight, height, BMI, waist and hip circumference as well as waist/hip ratio, FBG, serum creatinine, ALT, triglycerides, total cholesterol and low density lipoprotein cholesterol (LDL-cholesterol)