

FACULTY OF ENGINEERING

Structural Engineering

Estimation of drag coefficient of various structures using computational fluid dynamics.

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Civil Engineering

(Structural Engineering)

By Nourhan Sayed Fouad

Bachelor of Science in Civil Engineering

(Structural Engineering)

Faculty of Engineering, Ain Shams University, 2012

Supervised By

Dr. Gamal Hussien Mahmoud

Dr. Nasr Eid Nasr

Cairo - (2017)

FACULTY OF ENGINEERING

Structural

Estimation of drag coefficient of various structures using computational fluid dynamics.

by

Nourhan Sayed Fouad

Bachelor of Science in Civil Engineering

(Structural Engineering)
Faculty of Engineering, Ain Shams University, 2012

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr Eman Anwer Elshamy. Structural, Zagazig University	
Prof. Dr Mohamed Noor Eldin Saad. Structural, Ain Shams University	
Dr.Gamal Hussien Mahmoud.	

Date: 21 March 2017

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Civil Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Nourhan Sayed Fouad

Signature

Date: 21 March 2017

Researcher Data

Name : Nourhan Sayed Fouad.

Date of birth : 28/09/1990.

Place of birth : El Agouza, Giza.

Last academic degree

engineering.

: Bachelor of Science in civil

Field of specialization : Structural Engineering.

University issued the degree : Ain Shams University.

Date of issued degree : July 2012

Current job : Demonstrator at Faculty of

Engineering, ASU.

Acknowledgment

Foremost, I am deeply thankful to "Allah" by the grace of whom, this work was possible.

I would like to express my deep gratitude to Dr. Gamal Hussein, Associate Professor of Structural engineering – Faculty of Engineering- Ain Shams University, for his continuous support of my Master's study and research, sincere help, his patience, motivation and immense knowledge.

I am very grateful to Dr Nasr Eid Nasr, Lecturer of Structural Engineering – Faculty of Engineering- Ain Shams University, for his close supervision, precious efforts and continuous encouragement throughout this work.

I would like to thank all members of the Structural Engineering Department, Faculty of Engineering- Ain Shams University, for their support and continuous encouragement.

Last but not the least, I would like to dedicate this work and express my deep appreciation to my parents, family and best friends, to whom I am greatly indebted for their love and spiritual support throughout my life.

LIST OF CONTENTS

Content			Page
List of T	ables		i
List of F	igures		ii
Abstrac	t		vii
Chapter	(1): IN	TRODUCTION	
1.1	Definiti	on and history of computational fluid dynamics (CFD)	1
1.2	CFD si	mulation steps	2
	1.2.1	Problem definition	2
	1.2.2	Boundary conditions specification	2
	1.2.3	Turbulence models	2
	1.2.4	Grid specification	3
	1.2.5	Time step choice	
	1.2.6	Convergence criteria	3
1.3	Applica	ations of CFD	4
		al advantages of employing CFD	5
1.5	Limitat	ion of CFD	5
1.6	Estimat	ion of wind pressure on structure	6
	1.6.1	Wind effect on structure	6
	1.6.2	Definition and estimation of drag coefficient	7
1.7	Over vi	ew of various structures	8
	1.7.1	1	8
1.8	Charact	eristics of governing equations at CFD numerical model	9
	1.8.1	11 7 1	12
		Application of momentum equation	12
	1.8.3	Application of energy equation	14
		ry conditions	17
		CRIFICATION OF NUMERICAL MODELLING BY THE	
		OF CFD TECHNIQUE	10
	Introdu		18
		ing fundamentals	19
2.3	-	rative study	20
		Air flow around an isolated gable roof building with changing roof	20
		s (Tominaga et al., 2015) Wind pressure distribution on long gable roof building (Beaudoin,	20
	2002)	wind pressure distribution on long gable foot building (beaudom,	24
	2.3.3	Estimation of pressure distribution along circular silos with conical	24
		Sabransky and Melbourne, 1987)	30
		Variations of wind pressure on hip roofs with roof pitch (Xu and	
		on, 1998)	34
Chapter	(3): NU	IMERICAL MODELLING PARAMETERS SELECTION CRITE	RIA
3.1	Introdu	ction	37
3.2	Descrip	tion of studied models	37
	3.2.1	Gable roof	37
	3.2.2	Mono-slope	41
	3.2.3	Mansard roof	44
	3.2.4	Dome	46
	3.2.5	Lattice structure	49

Chapter	r (4) RE	SULTS	
4.1	Wind p	oressure distribution on gable roof	52
	4.1.1	In case of wind direction perpendicular to ridge (Θ = 0°)	52
	4.1.2	In case of wind direction parallel to ridge (Θ = 90°)	57
	4.1.3	In case of oblique wind direction (Θ = 45°)	62
4.2	Wind p	pressure distribution on mono-slope	69
	4.2.1	In case of wind direction perpendicular to ridge (Θ = 0°)	69
	4.2.2	In case of wind direction parallel to ridge (Θ = 90°)	73
	4.2.3	In case of wind direction perpendicular to ridge backward (Θ = 180°)	77
	4.2.4	In case of oblique wind direction (Θ = 45°)	81
4.3	Wind p	oressure distribution on mansard	89
4.4	Study o	of walls wind pressure distribution	92
	4.4.1	Gable roof subjected to 0° wind	92
	4.4.2	Gable roof subjected to 90° wind	93
		Mono-slope subjected to 0° wind	95
		Mono-slope subjected to 90° wind	96
4.5		pressure distribution on special structures	98
	4.5.1	Dome	98
	4.5.2	Variation of pressure coefficient with solidity ratio of lattice structure	
	model		104
_		OMPARISON BETWEEN CFD RESULTS AND CODE VALUES	
	Introdu		106
5.2		neral concept of wind analysis in standard codes	107
		Eurocode "EN 1991-1-4"	107
	5.2.2	The American society of civil engineers "ASCE 7-02"	108
5.3		re coefficient distribution compared with Eurocode.	110
		Gable roof pressure coefficient comparison	110
		Mono-slope pressure coefficient comparison	118
		Mansard pressure coefficient comparison	128
5.4		re coefficient distribution compared with ASCE & Egyptian code	132
	5.4.1	Gable roof	136
		Mono-slope	142
		Lattice structure	146
		Dome	148
_		ONCLUSION AND RECOMMENDATION FOR FUTURE WORK	
	Introdu		151
6.2	Conclu		152
	6.2.1	Gable roof structure	152
	6.2.2	Mono-slope structure	153
	6.2.3	Mansard building	153
	6.2.4	Dome	153
	6.2.5	Latticed structure	153
6.3		mendation of pressure distribution of gable roof and mono-slope	154
	6.3.1	Proposed pressure distribution on walls	154
.	6.3.2	Proposed pressure distribution on roof	156
Referen			160
Arabic s	summar	·y	163

LIST OF TABLES

Chapter (1)		
Table 1.1	A comparison between CFD simulation and experiments.	5
Chapter (2)		
Table 2.1	Average pressure coefficient on Gable roof building 5:10.	23
Table 2.2	Comparison between coefficients of pressure and suction of short and long	
	gable roof house for different roof pitches slopes.	27
Table 2.3	Tested models geometry.	30
Table 2.4	Pressure coefficient comparison between wind Tunnel and CFD.	31
Chapter (3)		
Table 3.1	Dimensions and number of cells of each gable roof model case.	39
Table 3.2	Dimensions and number of cells of each mono-slope model case.	43
Table 3.3	Mansard model domain mesh.	44
Table 3.4	Dome model geometry and domain mesh.	48
Table 3.5	Solidity ratio calculation for each lattice structure model.	50
Chapter (4)		
Table 4.1	Result Data for wind acting perpendicular to lattice structure face	104
Chapter (5)		
Table 5.1	External pressure coefficients for gable roof according to Eurocode.	112
Table 5.2	External pressure coefficients for mono-slope according to Eurocode.	120
Table 5.3	External pressure coefficients for mansard according to Eurocode.	129
Table 5.4	Pressure coefficient on walls according to ASCE.	132
Table 5.5	Pressure coefficient on roof according to ASCE.	133
Table 5.6	Pressure coefficient of lattice structure according to ASCE7-02	146
Table 5.7	Result Data for wind acting perpendicular to lattice structure face "@ zero	
	direction".	147
Table 5.8	External pressure coefficient on Dome surface according to Egyptian code.	148
Chapter (6)		
Table 6.1	Proposed pressure coefficient for gable roof at wind 0°	156
Table 6.2	Proposed pressure coefficient for gable roof at wind 90°	157
Table 6.3	Proposed pressure coefficient for mono-slope at wind 0°	158
Table 6.4	Proposed pressure coefficient for mono-slope at wind 180°	159
Table 6.5	Proposed pressure coefficient for mono-slope at wind 90°	159

LIST OF FIGURES

Chapter (1)		
Figure 1.1	Drag and lift forces	7
Figure 1.2	Isometric view of (a) gable, (b) mansard, (c) mono slope roof buildings	9
Figure 1.3	Element moving in the flow field	11
Figure 1.4	A small, infinitesimal, moving fluid element	12
Figure 1.5	Energy fluxes associated with moving fluid element	15
Chapter (2)		
Figure 2.1	Gable roof domain dimensions and mesh	21
Figure 2.2	Pressure coefficient distribution on gable roof building 5:10	22
Figure 2.3	Pressure coefficient and velocity distribution at domain section around gable roof building 5:10	23
Figure 2.4	Comparisons of pressure coefficient C _P	24
Figure 2.5	Long gable roof domain dimensions in meters	25
Figure 2.6	Isometric view of long gable roof model	25
Figure 2.7	Pressure coefficient comparison for gable roof pitch angle 18°	26
Figure 2.8	Comparison between code, wind tunnel and CFD Results	27
Figure 2.9	Contour diagrams of pressure coefficient on long and short pitched roof buildings	28
Figure 2.10	Contour diagrams of wind velocity on long and short pitched roof buildings	29
Figure 2.11	Silo geometry	30
Figure 2.12	Silo air domain dimensions in meters	31
_	Pressure coefficient distribution along roof model 1	32
	Pressure coefficient distribution along roof and wall model 2	32
_	Pressure coefficient distribution along roof model 3	32
-	Pressure coefficient distribution along roof and wall model 4	33
_	Pressure coefficient distribution along roof and wall model 5	33
_	Model configuration	34
-	Pressure coefficient variation with hipped roof angle at wind direction 0°	35
	Pressure coefficient variation with hipped roof angle at wind direction 90°	36
Chapter (3)	0	
Figure 3.1	Schematic view of gable roof model	38
Figure 3.2	Detailed views of domain surrounding gable roof model	38
Figure 3.3	Detailed views of surrounding domain mesh	40
Figure 3.4	Scaled residuals diagram	41
Figure 3.5	Schematic view of mono-slope model	41
Figure 3.6	Detailed views of domain surrounding mono-slope model	42
Figure 3.7	Variation of air flow with Reynolds number	43
Figure 3.8	Detailed elevation view of mono-slope surrounding domain mesh	43
Figure 3.9	Schematic view of model at wind 0°	44
Figure 3.10	Detailed views of surrounding domain and its mesh	45
Figure 3.11	Dome geometry and main parameters	47
Figure 3.12	Detailed views of surrounding domain mesh.	48
Figure 3.13	Lattice structure model dimensions and position inside air domain.	50
Figure 3.14	Mesh cells surrounding lattice structure model.	51
Chapter (4)		
Figure 4.1	Illustration of zero wind direction on gable roof	52
Figure 4.2	Wind pressure of zero wind direction on gable roof with different slopes	53
Figure 4.3	Wind pressure of zero wind direction on windward wall	54
Figure 4 4	Wind pressure of zero wind direction on leeward wall	55

Figure 4.5	Velocity diagram through x-direction	56
Figure 4.5a	Velocity diagram comparison with stream lines	56
Figure 4.6	Illustration of 90° wind direction on gable roof	57
Figure 4.7	Wind pressure of 90° wind direction on gable roof with different slopes	58
Figure 4.8	Wind pressure of 90° wind direction on windward wall	59
Figure 4.9	Wind pressure of 90° wind direction on leeward wall	60
Figure 4.10	Velocity diagram through x-direction	61
Figure 4.11	Illustration of oblique wind direction on gable roof	62
Figure 4.12	Wind pressure of 45° wind direction on gable roof with different slopes	63
Figure 4.13	Wind pressure of 45° wind direction on windward right wall	64
Figure 4.14	Wind pressure of 45° wind direction on windward left wall	65
Figure 4.15	Wind pressure of 45° wind direction on leeward left wall	66
Figure 4.16	Wind pressure of 45° wind direction on leeward right wall	67
Figure 4.17	Velocity diagram through x-direction	68
Figure 4.18	Illustration of zero wind direction on mono-slope	69
Figure 4.19	Wind pressure of zero wind direction on mono-slope roof with different slopes	70
Figure 4.20	Wind pressure of zero wind direction on windward wall	70
Figure 4.21	Wind pressure of zero wind direction on leeward wall	71
Figure 4.22	Velocity diagram through x-direction	72
Figure 4.23	Illustration of 90° wind direction on mono-slope	73
Figure 4.24	Wind pressure of 90° wind direction on mono-slope roof with different slopes	74
Figure 4.25	Wind pressure of 90° wind direction on windward wall	75
Figure 4.26	Wind pressure of 90° wind direction on leeward wall	76
Figure 4.27	Velocity diagram through x-direction	77
Figure 4.28	Illustration of 180° wind direction on mono-slope	77
Figure 4.29	Wind pressure of 180° wind direction on mono-slope roof with different slopes	78
Figure 4.30	Wind pressure of 180° wind direction on windward wall	79
Figure 4.31	Wind pressure of 180° wind direction on leeward wall	80
Figure 4.32	Velocity diagram through x-direction	80
Figure 4.33	Illustration of oblique wind direction on mono-slope	81
Figure 4.34	Wind pressure of 45° wind direction on mono-slope roof with different slopes	82
Figure 4.35	Wind pressure of 45° wind direction on windward right wall	83
Figure 4.36	Wind pressure of 45° wind direction on windward left wall	84
Figure 4.37	Wind pressure of 45° wind direction on leeward left wall	85
Figure 4.38	Wind pressure of 45° wind direction on leeward right wall	86
Figure 4.39	Elevation view of velocity diagram through x-direction	87
Figure 4.40	Plan view of velocity diagram through x-direction	88
Figure 4.41	Illustration of zero wind direction on mansard	89
Figure 4.42	Wind pressure of zero wind direction on mansard roof with different slopes	89
Figure 4.43	Wind pressure of zero wind direction on windward wall	90
Figure 4.44	Wind pressure of zero wind direction on leeward wall	90
Figure 4.45	Elevation view of velocity diagram through x-direction	91
Figure 4.46	Pressure coefficient variation with height on gable roof building windward wall	92
Figure 4.47	Pressure coefficient variation with height on gable roof building leeward wall	92
Figure 4.48	Pressure coefficient variation with height on gable roof building side wall	93
Figure 4.49	Pressure coefficient variation with height on gable roof building windward wall	93
Figure 4.50	Pressure coefficient variation with height on gable roof building leeward wall	94
Figure 4.51	Pressure coefficient variation with height on gable roof building side wall	94
Figure 4.52	Pressure coefficient variation with height on mono-slope building windward wall	95
Figure 4.53	Pressure coefficient variation with height on mono-slope building leeward wall	95