# Cord Albumin As a predictor for Neonatal Jaundice

#### Thesis

Submitted for partial fulfillment of the Master Degree
In Pediatrics

By

#### **Ahmed Mohammed Elnahrawy**

M.B.,B.CH.2007 Alexandria University

Under Supervision of

## Prof. Dr. Osama Noor Eldin Saleh

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

## Dr. Rania Hamed Shatlaa

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

### Dr. Doaa Gamal Essaa

Lecturer of Clinical Pathology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2014



سورة البقرة الآية: ٣٢



- Tirst, I wish to express my sincere thanks to Allah.
- № I would like to express my deep thanks and gratitude to Prof. Dr. Usama Moor Eldin, Prof. of Pediatries, Faculty of Medicine, Ain Shams University, to whom I owe a lot. He offered me generously his expensive time, great help, and kind encouragement.
- I want to express my great thanks to Dr.

  Rania Shatla, Lecturer of pediatrics,

  Faculty of Medicine, Ain Shams University.

  For her continuous help, and support thought this work, and for her kind supervision.

Ahmed Mohammed Elnahrawy



## **Contents**

| List of Abbreviations                     | I   |
|-------------------------------------------|-----|
| List of tables                            | III |
| List of figures                           | V   |
| Introduction and aim of work              | 1   |
| Neonatal jaundice                         | 4   |
| Bilirubin metabolism                      | 8   |
| Unconjugated hyperbilirubinemia           | 17  |
| Management of neonatal hyperbilirubinemia | 50  |
| Complications                             | 81  |
| Albumin                                   | 87  |
| Subject and method                        | 94  |
| Results                                   | 97  |
| Discussion                                | 110 |
| Summery and conclusion                    | 121 |
| Recommendation                            | 125 |
| References                                | 126 |
| Arabic summary                            |     |

# List of abbreviations

| AAP  | American academy of pediatrics                   |
|------|--------------------------------------------------|
| ADCC | Antibody-dependent cell-mediated cytotoxicity    |
| AHT  | Allogenic hepatocyte transplantation             |
| ASAP | As soon as possible                              |
| ATP  | Adenosine triphosphate                           |
| B/A  | Bilirubin /albumin                               |
| BAER | Brainstem Auditory Evoked Response               |
| BBB  | Blood Brain Barrier                              |
| BIND | Bilirubin –Induced neurologic Disorders Response |
| BP   | Blood Pressure                                   |
| CAR  | Constitutive androstane receptor                 |
| CMV  | Cytomegalovirus                                  |
| CN-1 | Crigler-Najjar-Type-1                            |
| CO   | Carbon monoxide                                  |
| CT   | Computed tomography                              |
| DAT  | Direct antiglobin test                           |
| DNA  | Dineucleotide adenosine                          |
| DSP  | Double surface phototherapy                      |
| DWI  | Diffusion-wheighted NMR imaging                  |
| ETCo | End Tidal Carbonmonoxid                          |
| FMH  | Fetal-Maternal Hemorrhage                        |
| G6PD | Glucose-6-phosphate dehydrogenase deficiency     |
| GST  | Glutathione -S - transferase                     |
| HbF  | Fetal hemoglobin                                 |
| HDN  | Hemolytic disease of the fetus and newborn       |
| НО   | Heme oxygenase                                   |
| HS   | Hereditary spherocytosis                         |
| IAT  | Indirect Coombs' test                            |
| IgG  | Immunoglobulin G                                 |
|      |                                                  |



| r-     |                                                          |
|--------|----------------------------------------------------------|
| IgM    | Immunoglobulin M                                         |
| IPT    | intraperitonial transfusion                              |
| IVC    | Inferior vena cava                                       |
| IVT    | intravascular transfusion                                |
| IVIG   | Intravenous Immunoglobulin                               |
| LBW    | Low birth weight                                         |
| LDH    | Lactate dehydrogenase                                    |
| LEDs   | Light-emitting diodes                                    |
| MRI    | Magnetic Resonance imaging                               |
| NICHHD | National Institute of Child Health and Human Development |
| NMR    | Nuclear magnetic resonance                               |
| NRBCs  | Nucleated red blood cell                                 |
| OD     | Optical density                                          |
| PK     | Pyruvate kinase                                          |
| PUBS   | percutaneous umbilical blood sampling                    |
| RE     | Reticulo endothelial system                              |
| Rh     | Rhesus Factor                                            |
| SLE    | Systemic lupus erythematosis                             |
| TcB    | Transcutaneous Bilirubin                                 |
| TSB    | Total Serum Bilirubin                                    |
| UDPGT  | Uridine diphosphate glucuronyl transferase               |
| UVC    | Umbilical vein catheter                                  |
| XT     | Exchange Transfusion                                     |
|        |                                                          |

# List of tables

| Number   | Title of table                            | Page   |
|----------|-------------------------------------------|--------|
| Nullibei |                                           | number |
| table 1  | Risk factors for hyperbilirubinemia in    | 5      |
|          | newborns.                                 |        |
| Table 2  | Hemolytic causes of unconjugated          | 17     |
|          | hyperbilirubinemia.                       |        |
| Table 3  | Non-hemolytic causes of uncongugated      | 18     |
|          | hyperbilirubinemia.                       |        |
| Table 4  | Possible mechanisms involved in           | 20     |
|          | physiologic jaundice.                     |        |
| Table 5  | Criteria to suspect pathologic Jaundice.  | 25     |
| Table 6  | Laboratory Evaluation of the Jaundiced    | 51     |
|          | Infant of 35 or More Weeks' Gestation.    |        |
| Table 7  | Risk factors for development of severe    | 54     |
|          | hyperbilirubinemia in infants 35 or more  |        |
|          | weeks' gestation (in approximate order of |        |
|          | importance).                              |        |
| Table 8  | American Academy of Pediatrics            | 73     |
|          | Guidelines for Management of              |        |
|          | Hyperbilirubinemia in Term Newborn.       |        |
| Table 9  | Bilirubin Level and Management            | 74     |
|          | Guidelines in LBW Babies Based on Birth   |        |
|          | Weight.                                   |        |
|          |                                           |        |
|          |                                           |        |

## 🕏 List of tables 🗷

| Number   | Title of table                           | Page number |
|----------|------------------------------------------|-------------|
| Table 10 | Exchange Transfusion Guidelines in LBW   | 74          |
|          | Infants Based on TSB mg/dL and B/A       |             |
|          | Ratio (mg/g) (Whichever Comes First).    |             |
| Table 11 | Management of Extreme Low Birth          | 75          |
|          | Weight Newborns With Jaundice:           |             |
|          | (Protocol for NICHHD Trial of            |             |
|          | Phototherapy and Exchange Transfusion.   |             |
| Table 12 | Sociodemographic data of the studied     | 97          |
|          | patients.                                |             |
| Table 13 | laboratory data of the studied cases     | 99          |
| Table 14 | Mangement of hyperbilirubinemia in the   | 101         |
|          | studied cases                            |             |
| Table 15 | Comparison betweem neonatal              | 102         |
|          | hyperbilirubinemia and gender            |             |
| Table 16 | Comparison between hyperbilirubinemia    | 104         |
|          | and mode of delivary                     |             |
| Table 17 | Comparison between hyperbilirubinemia,   | 105         |
|          | weight and gastional age                 |             |
| Table 18 | Comparison between bilirubin level at D3 | 106         |
|          | and D5 in relation to albumin level      |             |
| Table 19 | Correlation study between cord albumin,  | 107         |
|          | bilirubin D3 and bilirubin D5            |             |

# List of figures

| Number Title of figures | Page                                      |        |
|-------------------------|-------------------------------------------|--------|
| Number                  | Title of figures                          | number |
| Figure 1                | causes of neonatal jaundice               | 7      |
| Figure2                 | The chemical structure of bilirubin       | 8      |
| Figure3                 | Heam metabolism                           | 11     |
| Figure4                 | Fetal Bilirubin Metabolism                | 12     |
| Figure5                 | Enterohepatic circulation of bilirubin    | 37     |
| Figure6                 | Pentose phosphate pathway                 | 43     |
| Figure7                 | hereditary elliptocytosis                 | 48     |
| Figure8                 | hereditary pyropoikilocytosis             | 49     |
| Figure9                 | Newborn jaundice biology                  | 50     |
| Figure10                | Age-specific total serum bilirubin levels | 52     |
| Figure11                | Configuration and structural isomers of   | 55     |
|                         | 4z, 15z bilirubin in infants undergoing   |        |
|                         | phototherapy                              |        |
| Figure12                | Guidelines for phototherapy in            | 57     |
|                         | hospitalized infants of 35 or more weeks' |        |
|                         | gestation                                 |        |
| Figure13                | a neonate on conventional phototherapy    | 58     |
| Figure14                | neonate using bili-blanket                | 58     |
| Figure15                | Double surface phototherapy               | 59     |
| Figure16                | High-intensity gallium nitride light-     | 60     |
|                         | emitting diodes                           |        |
| Figure17                | Intensive phototherapy using triple       | 60     |
|                         | surface phototherapy                      |        |

#### 🕏 List of Figure 🗷

| Number   | Number Title of figures                  | Page   |
|----------|------------------------------------------|--------|
| Nullibei |                                          | number |
| Figure18 | warmer lined with aluminum foil          | 61     |
| Figure19 | effect of bilirubin level on response to | 61     |
|          | phototherapy                             |        |
| Figure20 | effect of bilirubin level on response to | 62     |
|          | phototherapy                             |        |
| Figure21 | Effect of Phototherapy in decreasing the | 62     |
|          | level of TSB                             |        |
| Figure22 | Exchange transfusion in a jaundiced      | 67     |
|          | neonate                                  |        |
| Figure23 | MRI Brain.Hyperintense basal ganglia     | 82     |
|          | lesions on T2-weighted images.           |        |
| Figure24 | Marked retrocollis and opisthotonus in a | 84     |
|          | baby with kernicterus                    |        |
| Figure25 | Bilirubin encephalopathy                 | 86     |
| Figure   | distrubtion of gender                    | 97     |
| 26       |                                          |        |
| Figure27 | Mode of delivary                         | 98     |
| Figure28 | Albumin level fequancy                   | 99     |
| Figure29 | Frequancy of hyperbilirubinemia          | 100    |
| Figure30 | Frequancy of phototherapy                | 101    |
| Figure31 | Frequency of exchange transfusion.       | 102    |
| Figure32 | Comparison between hyperbilirubinemia    | 103    |
|          | and gender                               |        |
| Figure33 | Comparison between hyperbilirubinemia    | 103    |
|          | and mode of delivary                     |        |

#### 🕏 List of Figure 🗷

| Number   | Title of figures                          | Page<br>number |
|----------|-------------------------------------------|----------------|
| Figure34 | Comparison between hyperbilirubinemia,    | 104            |
|          | weight and G.A                            |                |
| Figure35 | Comparison between albumin level and      | 105            |
|          | phototherapy                              |                |
| Figure36 | Comparison between albumin level and      | 106            |
|          | exchange transfusion.                     |                |
| Figure37 | Correlation study between cord albumin    | 107            |
|          | and bilirubin D3                          |                |
| Figure38 | Corrlation study between cord albumin     | 108            |
|          | and bilirubin D5                          |                |
| Figure39 | ROC curves for total cord albumin test in | 109            |
|          | phototherapy                              |                |

## **Abstract**

**Background:** Neonatal hyperbilirubinemia defined as a total serum bilirubin level above 5 mg per dL (86 μmol per L) is a frequently encountered problem. Although up to 60 percent of term newborns have clinical jaundice in the first week of life, few have significant underlying disease. However, hyperbilirubinemia in the newborn period can be associated with severe illnesses such as hemolytic diseases, metabolic and endocrinal disorders, anatomic abnormalities of the liver, and infections.

**Objective:** To determine the correlation between cord serum albumin and the development of neonatal hyperbilirubinemia.

**Method:** In present prospective study, 40 newborns were subjected to analysis of cord serum albumin and serum bilirubin at day3 and day5.

**Results:** Cord serum albumin has -ve correlation with neonatal hyperbilirubinemia.

**Conclusion:** Newborns with cord serum albumin  $\leq 2.8 \text{mg/dl}$  have increased risk of hyperbilirubinemia while newborns with cord serum albumin  $\geq 3.3 \text{mg/dl}$  have no risk of hyperbilirubinemia.

## Introduction

Jaundice is one of the commonest problems that can occur in a newborn. Mostly it is physiological in the newborn because liver is not mature enough to handle the bilirubin .The neonates have about 1% of uridine diphosphoglucuronosyl transferase (UDPGT) activity as that of an adult (*Kawade and Onishi*, 1981).

Apart from this there is an increased load of bilirubin in neonates as they have a higher circulating erythrocyte volume, a shorter mean erythrocyte life and a larger early labeled bilirubin peak (*MacDonald et al.*, 2005).

This hyperbilirubinemia is due to unconjugated bilirubin which is toxic to central nervous system. More than two thirds of all newborns appear jaundiced clinically because at some point during the first week of life almost every newborn has a total serum bilirubin (TSB) level of > 1 mg/dl, the upper limit of normal for an adult (0.2-1.2 mg/dl).

There are significant differences in TSB levels in different populations and it is difficult to define as normal or abnormal or obtain diagnostic and therapeutic cut off levels (*MacDonald et al.*, 2005).

Defining a certain bilirubin level as physiological can be misleading and potentially dangerous. It is difficult to predict the course of bilirubinemia on day one of a neonate. There have been reports of cord blood bilirubin as predictor of hyperbilirubinemia that would require phototherapy (PT) (Sun et al., 2007 and Suchonsker et al., 2004).

Albumin is the major binding protein in the human neonate. Low production of albumin will lower its transport and binding capacity (*Sgro et al.*, 2006).

Albumin binds to potentially toxic products like bilirubin and antibiotics. Bilirubin binds to albumin in an equimolar ratio. Free bilirubin is anticipated when the molar bilirubin- to-albumin (B: A) ratio is > 0.8. It is the free bilirubin which can cross the blood brain barrier. There are no precise data to correlate a specific bilirubin value or albumin value with neurotoxicity (*Bunt et al.*, 2007).

# Aim of work

This study is designed to correlate serum cord albumin level with hyperbilirubinemia in neonates.