ELIA NABIL / Wastewater Treatment by Using Cascade Technology

 $ar{By}$ ELIA NABIL SHOKRY GAD ALLAH

Wastewater Treatment by Using Cascade Technology for Nitrogen Removal

A Thesis

Submitted to the Faculty of Engineering
Ain Shames University for the Partial Fulfillment
of the Requirements of the Degree of Master of Science
in Civil Engineering

Prepared by ENG. ELIA NABIL SHOKRY GAD ALLAH

B.Sc. in Civil Engineering, 2012 Higher Institute of Engineering – El Shorouk Academy

Supervisors

Prof. Dr. FIKRY HALIM GHABRIAL

Professor, Sanitary Engineering, Ain Shams University, Cairo, EGYPT

Ass. Prof. Dr. MAHMOUD ROUSHDI ABDEL GHANY

Associate Professor, Environmental Engineering, National Water Research Centre, Qalubia, EGYPT

MOHAMED EL BORAIE Dr. MOHAMED

Researcher, Central Laboratories for Environmental Monitoring, National Water Research Centre, Qalubia, EGYPT

2018

Wastewater Treatment Using Cascade Technology for Nitrogen Removal

A Thesis For The M.Sc. Degree in Civil Engineering (SANITARY ENGINEERING)

By

ENG. ELIA NABIL SHOKRY

B.Sc. in Civil Engineering, June 2012 Higher Institute of Engineering – El Shorouk Academy

THESIS APPROVAL

Prof. Dr. Khaled Abd El-Fattah Kheireldin Professor, Water Resources Engineering, National Water Research Centre. Prof. Dr. Mohmed Hassan Abd El-Raziek Professor, Sanitary Engineering, Faculty of Engineering, Ain Shams University. Prof. Dr. FIKRY HALIM GhABRIAL

Professor, Sanitary Engineering, Faculty of Engineering, Ain Shams University.

ACKNOWLEDGMENTS

All gratitude to almighty God, the most merciful, the most compassionate.

I would like to pleasure in expressing my deep gratitude to my employer, the Environment and Climate Changes Research Institute Egypt (ECRI),

I would like to thank all those who have helped me during my study. My sincere thanks are to my supervisor **Prof. Dr. Fikry Halim Ghabrial**, Professor, Sanitary Engineering, Ain Shams University, for his great help, encouragement throughout this work, valuable comments and sound guidance.

I would like to acknowledge **Ass. Prof. Dr. Mahmoud Rousdi Abd Elghany**Associated Professor, Environmental Engineering, National Water Research Centre, for his helpful directions and honest assistance, encouragement and advice.

I am grateful to **Dr. Mohamed Mohamed El Boraie**, Researcher, Central Laboratories for Environmental Monitoring, National Water Research Egypt for providing valuable advice.

I avail of this opportunity to express my gratitude to all the staff members of Environment and Climate Changes Research institute, especially **Prof. Dr. Khaled Khaireldin** the director of the institute for their kind helping in the supplying the data necessary as well as the facilities offered for conducting this work. I'm deeply grateful to

In the end, I offer all the meanings of love, thanks and appreciation to my family (my father, mother, wife and daughter).

ABSTRACT

Wastewater treatment plants typically remove nutrients (nitrogen and phosphorus) from wastewater because of environmental, public health, or economical concerns. Nutrients stimulate the growth of algae in surface water. Ammonia can be toxic to certain species of fish. The main goal of this research was to obtain the optimum influent distribution flow in achieving nitrogen removal. A pilot-plant activated sludge system was constructed, consisting of two step cascade for removal of carbon and nitrogen. Each step consists of anoxic and oxic zone. The volumes ratio between anoxic and oxic compartments could be controlled by internal moving partitions. Synthetic wastewater having the same properties of municipal wastewater was used in all experiments. The influent total flow rate was fed to the pilot plant at distribution percentages of 50/50%, 75/25% and 87.5/12.5% to the 1st and 2nd anoxic zones, respectively. The results for the entire experimental period showed high removal efficiencies of organic matter of 96% as total chemical oxygen demand, 97% as biochemical oxygen demand, and 93% removal of total Kjeldahl nitrogen. The highest removal efficiency and the optimum performance were recorded at volume of anoxic zone equals 35% of oxic zone volume and at distribution percentages of 75/25%. Consequently, the plant configuration enhanced removal efficiency, optimized performance, saved energy, formed good settling sludge and provided operational conditions that could be implemented in existing plants to enhance nitrogen removal.

Key Words: Nitrogen removal, municipal wastewater, treatment, two step cascade, aerobic, anoxic.

Table of Contents

ACKNOWLEDGMENTS
Table of Contents
List of Figures
List of Tables VIII CHAPTER I INTRODUCTION 1.1 GENERAL
CHAPTER I INTRODUCTION 1.1 GENERAL
INTRODUCTION 1.1 GENERAL
1.2 PROBLEM IDENTIFICATION 2 1.3 OBJECTIVES OF CURRENT RESEARCH 2 1.4 SCOPE OF WORK 2 1.5 THESIS ORGANIZATION 4 CHAPTER II LITRATURER REVIEW 2 2.1 INTRODUCTION 6 2.2 Status of Wastewater Treatment in the Egypt 8 2.3 Allowable limitations in the effluent of wastewater treatment plants in some African and EU countries 9 2.4 Constituents of Nitrogen in Domestic Wastewater 9 2.5 Biological Nitrogen Removal 11 2.5.1 Nitrification 15 2.5.2 Denitrification 15 2.6 Configurations of Biological Nitrogen Removal Process (BNR) 18 2.6.1. Suspended Growth Systems 18 2.6.2 Attached Growth and Hybrid Systems 28 2.7 Wastewater Treatment for Nitrogen Removal Using Cascade Technology 29 2.8 Previous Studies of Cascade Technology 32
1.2 PROBLEM IDENTIFICATION 2 1.3 OBJECTIVES OF CURRENT RESEARCH 2 1.4 SCOPE OF WORK 2 1.5 THESIS ORGANIZATION 4 CHAPTER II LITRATURER REVIEW 2 2.1 INTRODUCTION 6 2.2 Status of Wastewater Treatment in the Egypt 8 2.3 Allowable limitations in the effluent of wastewater treatment plants in some African and EU countries 9 2.4 Constituents of Nitrogen in Domestic Wastewater 9 2.5 Biological Nitrogen Removal 11 2.5.1 Nitrification 15 2.5.2 Denitrification 15 2.6 Configurations of Biological Nitrogen Removal Process (BNR) 18 2.6.1. Suspended Growth Systems 18 2.6.2 Attached Growth and Hybrid Systems 28 2.7 Wastewater Treatment for Nitrogen Removal Using Cascade Technology 29 2.8 Previous Studies of Cascade Technology 32
1.3 OBJECTIVES OF CURRENT RESEARCH
1.5 THESIS ORGANIZATION
CHAPTER II LITRATURER REVIEW 2.1 INTRODUCTION
LITRATURER REVIEW 2.1 INTRODUCTION
2.1INTRODUCTION62.2Status of Wastewater Treatment in the Egypt82.3Allowable limitations in the effluent of wastewater treatment plants in someAfrican and EU countries92.4Constituents of Nitrogen in Domestic Wastewater:102.5Biological Nitrogen Removal112.5.1Nitrification112.5.2Denitrification152.6Configurations of Biological Nitrogen Removal Process (BNR)182.6.1Suspended Growth Systems182.6.2Attached Growth and Hybrid Systems282.7Wastewater Treatment for Nitrogen Removal Using Cascade Technology292.8Previous Studies of Cascade Technology:32
2.2Status of Wastewater Treatment in the Egypt.82.3Allowable limitations in the effluent of wastewater treatment plants in someAfrican and EU countries.92.4Constituents of Nitrogen in Domestic Wastewater:102.5Biological Nitrogen Removal112.5.1Nitrification.112.5.2Denitrification152.6Configurations of Biological Nitrogen Removal Process (BNR).182.6.1Suspended Growth Systems.182.6.2Attached Growth and Hybrid Systems282.7Wastewater Treatment for Nitrogen Removal Using Cascade Technology292.8Previous Studies of Cascade Technology:32
2.3Allowable limitations in the effluent of wastewater treatment plants in someAfrican and EU countries92.4Constituents of Nitrogen in Domestic Wastewater:102.5Biological Nitrogen Removal112.5.1Nitrification112.5.2Denitrification152.6Configurations of Biological Nitrogen Removal Process (BNR)182.6.1Suspended Growth Systems182.6.2Attached Growth and Hybrid Systems282.7Wastewater Treatment for Nitrogen Removal Using Cascade Technology292.8Previous Studies of Cascade Technology:32
African and EU countries
2.4Constituents of Nitrogen in Domestic Wastewater:102.5Biological Nitrogen Removal112.5.1Nitrification112.5.2Denitrification152.6Configurations of Biological Nitrogen Removal Process (BNR)182.6.1Suspended Growth Systems182.6.2Attached Growth and Hybrid Systems282.7Wastewater Treatment for Nitrogen Removal Using Cascade Technology292.8Previous Studies of Cascade Technology:32
2.5Biological Nitrogen Removal112.5.1Nitrification112.5.2Denitrification152.6Configurations of Biological Nitrogen Removal Process (BNR)182.6.1Suspended Growth Systems182.6.2Attached Growth and Hybrid Systems282.7Wastewater Treatment for Nitrogen Removal Using Cascade Technology292.8Previous Studies of Cascade Technology32
2.5.1Nitrification112.5.2Denitrification152.6Configurations of Biological Nitrogen Removal Process (BNR)182.6.1Suspended Growth Systems182.6.2Attached Growth and Hybrid Systems282.7Wastewater Treatment for Nitrogen Removal Using Cascade Technology292.8Previous Studies of Cascade Technology32
2.5.2Denitrification152.6Configurations of Biological Nitrogen Removal Process (BNR)182.6.1.Suspended Growth Systems182.6.2Attached Growth and Hybrid Systems282.7Wastewater Treatment for Nitrogen Removal Using Cascade Technology292.8Previous Studies of Cascade Technology32
2.6Configurations of Biological Nitrogen Removal Process (BNR)182.6.1Suspended Growth Systems182.6.2Attached Growth and Hybrid Systems282.7Wastewater Treatment for Nitrogen Removal Using Cascade Technology292.8 Previous Studies of Cascade Technology32
2.6.1. Suspended Growth Systems182.6.2 Attached Growth and Hybrid Systems282.7 Wastewater Treatment for Nitrogen Removal Using Cascade Technology292.8 Previous Studies of Cascade Technology32
2.6.2 Attached Growth and Hybrid Systems 28 2.7 Wastewater Treatment for Nitrogen Removal Using Cascade Technology 29 2.8 Previous Studies of Cascade Technology 32
2.7 Wastewater Treatment for Nitrogen Removal Using Cascade Technology29 2.8 Previous Studies of Cascade Technology:
2.8 Previous Studies of Cascade Technology: 32
•
CHADTED III
MATERIALS AND METHODS
3.1 General 39
3.2 Pilot Description
3.2.1 Feeding Tank
3.2.2 Dosing pumps
3.2.2 Reactor
3.2.3 Aeration system 49
3.2.4 Returned sludge pumps
3.2.5 Final Sedimentation Tank
3.3 Components of Pilot Plant 51
3.4 Synthetic wastewater properties 53
3.4.1 Synthetic influent composition
3.5 Operational Program
CHAPTER IV

RESULTS DISCUSSIONS OF PHASE 1			
4.1 Startup and Stage one			60
4.1.1. COD results			61
4.1.2. BOD ₅ Results			62
4.1.3. TKN Results			63
4.2. Stage two			64
4.2.1. COD results			64
4.2.2 BOD5 Results			65
4.2.3 TKN Results			66
4.3 STAGE THREE			67
4.3.1 COD results			68
4.3.2 BOD5 Results			69
4.3.3 TKN Results			70
4.4 Discussions of Integrated Phase 1 Results			71
4.4.1 COD and BOD5			
4.4.2 TKN			73
4.4.3 NH3 and NO3 CONCENTRATIONS			74
4.4.5 TSS Measurements and Results			
4.4.6 MLSS MESUREMENTS			
4.4.7 DO and PH MEASUREMENT			79
CHAPTER V			
RESULTS DISCUSSIONS OF PHASE 2			
5.1 STAGE ONE			84
5.1.1. COD RESULTS			85
5.1.2. BOD5 RESULTS			86
5.1.3. TKN RESULTS			86
5.2 STAGE TWO			87
5.2.1 COD RESULTS			88
5.2.2 BOD5 RESULTS			89
5.2.3 TKN RESULTS			89
5.3 STAGE THREE			90
5.3.1 COD RESULTS			91
5.3.2 BOD5 RESULTS			92
5.3.3 TKN RESULS			93
5.4 Discussions of Integrated Phase 2 Results			94
5.4.1 COD, BOD5 and TKN			95
5.4.2 T.S.S RESULTS			98
5.4.3 MLSS RESULTS			
5.4.4 DO and PH MEASUREMENTS			101
CHAPTER VI			
CONCLUTIONS			
6.1 Conclusions			104
6.2	Future	Studies	and
Recommendations	106		
REFRENCES			107

LIST OF FIGURES

	Page
Figure 2.1 – Two stage suspended growth system	14
Figure 2. 2 – Two modes of nitrate removal can occurred in biological process	17
Figure 2.3 - Modified Ludzck Ettinger Process [EPA, 2009]	19
Figure 2.4 - Oxidation Ditch with Aerobic and Anoxic Zones	21
Figure 2.5 – Step feed nitrogen removal process	22
Figure 2.6 – The A2/O process	23
Figure 2.7 - The 5-stage modified Bardenpho process	23
Figure 2.8 – The University of Cape Town(UCT) process	24
Figure 2.9 – The Modified UCT process	25
Figure 2.10 – The VIP process	26
Figure 2.11 – The Johannesburg process	27
Figure 2.12 – The Bio-denipho process	28
Figure 2.13 - Schematic diagram of the step feed biological nitrogen Removal	32
process	
Figure 2.14 - Schematic layout of the pilot-scale BNR system	35
Figure 2.15 - Schematic diagram of the lab-scale MBBR system	36
Figure 3.1 – Schematic diagram of the step feed biological nitrogen removal	39
process	
Figure 3.2 – Used feeding tank	40
Figure 3.3 Used dosing pumps	41
Figure 3.4 – The used reactor filled with fresh water	42
Figure 3.5 – Mixers and blowers installed in the reactor	49
Figure 3.6 – The used returned sludge pumps	50
Figure 3.7 - Final Sedimentation Tank	51
Figure 3.8 – Some of Synthetic Wastewater Components	54
Figure 3.9 – Electronic Precision Balance	55

Figure 3.10 – Digestion of sample before measure COD		58
Figure 3.11 – Smart Colorimeter Used To Measure COD		58
Figure 3.12 – kjedahl UDK 130 used To Measure TKN.		59
Figure 3.13 – During DO measuring		59
Figure 3.14 – During PH measuring		60
Figure 4.1 – COD results for startup and stage one		62
Figure 4.2 – BOD results of startup and stage one		61
Figure 4.3 – TKN results of startup and stage one		62
Figure 4.4 – COD results of stage two		66
Figure 4.5 – BOD5 results of stage two		67
Figure 4.6 – TKN results of stage two		68
.Figure 4.7 – COD results of stage three		69
.Figure 4.8 – BOD ₅ results of stage three		70
Figure 4.9 – TKN results of stage three		71
Figure 4.10 – Effect of Temperature on COD, BOD removal during phase 1.		72
Figure 4.11 – Average MLSS in the reactor during phase 1.		73
Figure 4.12 – 4.12 TKN removal during phase 1		74
Figure 4.13 – Average No3 and NH3 concentrations during phase 1	75	
Figure 4.14 – Average TSS during phase 1	76	
Figure 4.15 – Average TSS in returned sludge	77	
Figure 4.16 – TSS results during phase 1	78	
Figure 4.17 – DO concentrations during phase 1.	80	
Figure 4.18 – PH measurements during phase 1	81	

Figure 5.1 – COD Results of stage one	
Figure 5.2 – BOD5 results of stage on	84
Figure 5.3- TKN results of stage one	85
Figure 5.4- COD results of stage Two	86
Figure 5.5 – BOD5 results of stage Two	87
Figure 5.6 – TKN results of stage Two	88
Figure 5.7 - COD results of stage three	90
Figure 5.8 - BOD5 results of stage three	91
Figure 5.9 - TKN results of stage three	92
Figure 5.10- Relation between COD, BOD, and Temperature in phase 2	93
Figure 5.11 - Relation between COD, TKN, and Temperature in phase 2	94
Figure 5.12 - Maximum removal of COD, BOD5, and TKN during phase 2	95
Figure 5.13 - Average TSS concentrations during phase 2	97
Figure 5.14 – Average TSS of returned sludge during phase 2	97
Figure 5.15 – TSS results during phase 2	98
Figure 5.16- MLSS results during phase 2	99
Figure 5.17 – DO concentrations during phase 2	100
Figure 5.18 - PH measurements during phase 2	101

LIST OF TABLES

	Page
Table 2.1 – displays the release standards on the main wastewater	9
parameters of some African countries compared to the main wastewater	
parameters of EU countries [EU UWWDT 91/271 EEC].	
Table 3.1 – Dosing pumps properties	41
Table 3.2 – Returned sludge pumps Properties of returned sludge	50
Table 3.3 – Dimensions of Reactor Zones in Different Stages of phase 1.	52
Table 3.4 – Synthetic influent composition	53
Table 3.5- operation conditions of experimental work	55
.Table 4.1 - Operation conditions during startup and stage one	61
Table 4.2 – operation conditions during stage two	65
Table 4.3 – operation conditions of stage three	68
Table 4.4 – MLSS results during phase 1	79
Table 5.1 – stage one operating conditions.	82
Table 5.2 – operation conditions of stage two	85
Table 5.3 – operation conditions of stage three	89
Table 5.4 – Overview on effluent requirements for the main wastewater	96
treatment parameters in comparison to the ELLLIWWDT 91/271 EEC	

CHAPTER I INTRODUCTION

1.1 GENERAL

Wastewater engineering ultimate goal is the protection of public health in a manner corresponding to social, economic and environmental concerns. To save the environment and protect public health, the citizens must have the awareness of wastewater impacts on individuals when wastewater is discharged into the environment. Technologies of wastewater treatment are that can be used to remove wastewater pollutants such as organic matters, heavy metals, nutrients, pathogensetc. In addition to make the final production of treatment process safe to disposal or benefit to reuse.

A large amount of nutrients are found in municipal wastewater, which comes from several human activities. Nutrients mainly nitrogen (N) and phosphorous (P) are essential for growth of many plants and other organisms. N may found in several forms in the wastewater and in the environment may be exist in both organic and inorganic forms.

In recent times, chemical methods for nitrogen removal from wastewater were limited in use compared with the use of biological treatment methods. Because of that biological treatment methods are more effective and more economical. The main goal of treatment is to reduce the

nutrients concentration in the effluent wastewater at low cost. Cascade Technology with step feeding is considered one of the most effective and economic system which are used for nutrient removal. In this study an experimental work is carried out to study the effect of some parameters on cascade technology.

1.2 PROBLEM IDENTIFICATION

Nowadays, many governorates of Egypt are rapidly growing like Cairo, Alexandria. These governorates suffer from various problems regarding the availability of potable water for the human usage. So we need to reduce the amount of potable water used in irrigation and substitutes it with well treated wastewater. But we must apply economical and effective wastewater treatment techniques, biological treatment met these conditions global trend these days is to develop biological treatment methods.

1.3 RESEARCH OBJECTIVES.

The major goal of this research is to study the application of "wastewater treatment by using cascade technology for nitrogen removal" and finding the optimum operation conditions to obtain the best carbon and nitrogen removal.

1.4 SCOPE OF WORK

The scope of work will be divided into experimental and analytical works. The experimental work plan is implemented on a pilot plant

especially designed and established for this purpose. The experimental program was geared to carry out the following investigations:

- The treatment potential of synthetic wastewater using two stage cascade, which consist of a series of (anoxic) and nitrification (oxic) reactors followed by a sedimentation tank.
- The concentration of nitrogen through the different treatment stages.
- The effect of anoxic/oxic volume ratio on removal efficiency.
- The effect of changing the influent flow rate ratio between the first and the second stages.

To examine the nitrogen removal within the two stage cascade technology, samples were collected from each stage and from the outlet of the sedimentation tanks.

The Analytical work plan includes:

- Reviewing literature of all previous researches and studies related to biological nitrogen and phosphorus removal technologies.
- Developing an appropriate design of the pilot plant taking into consideration the possibility of applying alternative schemes and operational setups.
- Analysis and discussion of collected data and experimental results of the pilot plant in fulfillment of the above mentioned investigations including performance assessment and analysis.

- Developing a set of conclusions and recommendations for the optimum configuration and operational conditions for nitrogen removal using the cascade technology.
- Thesis write up

1.5 THESIS CONTENTS

Thesis contains of 6 chapters as follows:

CHAPTER 1: INTRODUCTION

There is a general overview of the objective of the current research and the scope of work in this chapter.

CHAPTER 2: LITERATURE REVIEW

In this chapter, general layout about biological treatment, theory, mechanism, different types of it and the previous studies in biological nitrogen and phosphorus removal technologies.

CHAPTER 3: MATERIALS AND METHODS

This chapter includes the design and description of the pilot plant, the comprehensive description of each experimental investigation is also addressed in this chapter. Startup, sampling schedule and testing procedures are also discussed.

CHAPTER 4: RESULTS AND DISCUSSION OF PHASE 1.

This chapter includes the experimental results obtained during the operation of the two stage cascade technology at phase 1 in addition to