BIOREMEDIATION OF AGRICULTURE WASTEWATER USING SOME PLANT GROWTH PROMOTING RHIZOBACTERIA AND ITS REUSE FOR IRRIGATION OF SOME CROPS

By

MARWA IBRAHIM KAHLIL HASSAN

B.Sc. Agric. Sc. (Agric. Biotechnology), Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment Of

The Requirements for the Degree of

MASTER OF SCIENCE in

Agricultural Sciences (Agricultural Microbiology)

Department of Agricultural Microbiology
Faculty of Agricultural
Ain Shams University

Approval Sheet

BIOREMEDIATION OF AGRICULTURE WASTEWATER USING SOME PLANT GROWTH PROMOTING RHIZOBACTERIA AND ITS REUSE FOR IRRIGATION OF SOME CROPS

By

MARWA IBRAHIM KAHLIL HASSAN

B.Sc. Agric. Sc. (Agric. Biotechnology), Ain Shams University, 2011

This thesis for M.Sc. degree has been approved by:

Date of Examination: 14 / 1 / 2018

Dr. Fatma Ibrahim El-Zamik
Prof. Emeritus of Agricultural Microbiology, Faculty of Agricultural
Zagazig University.
Dr. El-Shahat Mohamed Ramadan
Prof. Emeritus of Agricultural Microbiology, Faculty of Agriculture
Ain Shams University.
Dr. Mona Mansour Oraby
Prof. of Agricultural Microbiology, Faculty of Agriculture, Air
Shams University.
Dr. Wedad EL-Tohamey EL-Said Eweda
Prof. Emeritus of Agricultural Microbiology, Faculty of Agriculture
Ain Shams University.

BIOREMEDIATION OF AGRICULTURE WASTEWATER USING SOME PLANT GROWTH PROMOTING RHIZOBACTERIA AND ITS REUSE FOR IRRIGATION OF SOME CROPS

By

MARWA IBRAHIM KAHLIL HASSAN

B.Sc. Agric. Sc. (Agric. Biotechnology), Ain Shams University, 2011

Under the supervision of:

Dr. Wedad EL-Tohamey EL-Said Eweda

Prof. Emeritus of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Mona Mansour Oraby

Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Nabil Omar

Head Research of Agricultural Microbiology Emeritus, Soils, Water and Environment Res. Inst., (SWERI) ARC.

ABSTRACT

Marwa Ibrahim Kahlil: Bioremediation of Agriculture Wastewater Using Some Plant Growth Promoting Rhizobacteria and Its Reuse for Irrigation of Some Crops. Unpublished M.Sc. Thesis, Department of Agric. Microbiology. Faculty of Agriculture, Ain shams University, 2017.

This investigation conducted agricultural was on drainage Elwastewater from Mohete drain(Marioteya Canal) west Cairo. samples collected from different the were places and different depth levels in (Summer and Winter seasons). The contaminated with microorganisms, wastewater pathogenic the fertilizers of (inorganic and organic), heavy excess metals, and Plant the residuals of pesticides. By using Growth some Promoting Rhizobacteria (PGPR) to remediate the wastewater biological bioremediation. Chemical remediation was used nitrification inhibitor to stopped transformation of ammonia as nitrate. This work conducted the ability of was to study to **PGPR** strains **Bacillus** megaterium, **Bacillus** subtilis, e.g. **Bacillus** Pseudomonas circulans, Paenibacillus polymyxa, fluorescens, Serratia marcescens and Azotobacter sp. Azotobacter chroococcum Azo.5, Azo.9 and Azo.23to the drainage water for irrigate the Mentha viridis cv. and Gladiolus plant. Two pot experiments were conducted in grandiflorus cv. greenhouse. The treatments were applied follows: Natural as treated water and drainage water to irrigate plant. the **PGPR** Use as inoculants and thiourea nitrification as inhibitor, Heavy metal treated was (Copper, Cobalt, Zinc, and Mercury) removal of heavy Cadmium showed the metals **PGPR** from drainage water.The characterizations of **PGPRs** by as shown in the obtained results are they could enhance plant growth by using their own metabolism (solublizing phosphate, producing hormones fixing nitrogen) well as or as correlation of them with the potenit of effects on the growth of plants in unfavorable conditions in order to improve the efficiency phytoremdiation of contarinated soils. The removal of heavy metals and the elimination of pesticides residues were noticed markedly in this investigation.Results also confirmed the ability of PGPRs in suppressing the effect of pathogenic bacteria like Salmonella sp. and E.coli. These abilities are of plant importance terms of and soil health. great Consequently, the role of PGPRs bacteria associated with plant of water remediation and soil rhizosphere in contaminations due to its biochemical activity and thus, stimulate plant growth is a great important subject in phytoremediation process nowadays.

Key words: Phytoremediation, Bioremediations, Heavy metals, Pathogenic bacteria, PGPRs, *Mentha viridis* cv, *Gladiolas grandiflorus* cv.

ACKNOWLEDGMENT

Praise and thanks be to **Allah**, the most graceful, the most merciful for assisting and directing me to the right way.

Great thanks to Dr. Wedad El-Tohamy **El-Sayed** are **Eweda**, Professor Emeritus of Agric. Microbiology, Department of Agric. Microbiology, Faculty of Agric. Ain Shams University, for her kind supervision, moral and faithful attitude from the beginning to the end of this thesis work and supporting me during these past four years, constructive criticism of the manuscript, close guidance and keen interest. (Principal Supervisor). successful accomplishment of this research work would not have been possible without the generosity and encouragement of my great supervisor Prof. Dr. Wedad, who gave me a great deal of her time, experience and un-limited support. My special thanks go to her for the unique guidance and suggestions throughout the entire work and especially for her confidence on me; thank you I learned from your insight a lot.

I am deeply grateful to **Dr. Mohamed Nabil Omar**, Professor of applied Microbiology, Microbiology Department, Soil, Water and Environment Research Institute, Agriculture Research Center, Giza, Egypt, for his remarkable influence, kind continuous cooperation and energetic leadership of our research team in the Institute. His expert supervision added much to my Knowledge.

I would like express my sincere appreciation to **Dr. MONA M. ORABI,** Professor Department of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, for her invaluable advices, helpful suggestions, critical discusses, precious assistance and helpful comments on the manuscript.

I would like to express my sincere thanks and deep gratitude to **Dr. Osama Nagde Massod,** Professor of applied Microbiology,

Microbiology Department, Soil, Water and Environment Research

Institute, Agriculture Research Center, Giza, Egypt, for his

I would also like to acknowledge **Dr. Nashwa Fetian** Professor of applied Microbiology, Microbiology Department, Soil, Water and Environment Research Institute, Agriculture Research Center, Giza, Egypt, for helping me without prior knowledge to the most important point in my work and free of charge, so I am really thank you a lot.

My heart full thanks and sincere appreciation to my family for their helpful support. Precious understanding, patience, encouragement all over my live.

CONTENTS

	Page
LIST OF TABLES	v
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xiii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Water pollution	5
2.2. Agricultural wastewater (drainage)	6
2.3. Physical characteristics of waste water	7
2.4. The pollutants in agricultural wastewater are	8
2.4.1. Organic pollutants	8
2.4.1.1. Pesticides	9
2.4.1.2. Microbial pollutants	9
2.4.2. Inorganic pollutants	10
2.4.2.1. Nitrogen content	10
2.4.2.2. Chloride	10
2.4.2.3. Phosphorus	11
2.4.2.4. Sulphate	11
2.4.2.5. Heavy metals	11
2.4.2.5.1. Harmful effect of some heavy metals ions	12
2.5. The application processes to removing of pollutants in agricultural wastewater	13
2.5.1. Preliminary treatment	13
2.5.2. Primary treatment	14
2.5.3. Secondary treatment	14
2.5.3.1. Physical	15
2.5.3.2. Chemical	15
2.5.3.3. Biological	15

2.6. Plant growth-promoting rhizobacteria (PGPR)	19
2.6.1. Plant growth promoting substances	21
2.7. Mechanisms of PGPR for removal pollution	23
2.7.1. Role of PGPR in degrading pesticides	23
2.7.2. Role of PGPR in removing heavy metals	24
2.7.3. Role of PGPR in inhibition pathogen microorganisms	25
2.8. The harmful effects of some pathogenic bacteria on human health and environmental	25
2.9. Role of PGPR inoculation on plant growth, physiological responses and yield	29
2.9.1. Induction of systemic resistance (ISR)	29
3. MATERIALS AND METHODS	32
3.1. Materials	32
3.1.1. Agricultural wastewater collection	32
3.1.2. Study area	33
3.1.3. Bacterial used	34
3.1.4. Media and solutions used	36
3.1.4.1. Media used for microbiological determination	36
3.1.5. Plant material used	40
3.1.6. Soils used	40
3.1.7. Fertilization used	41
3.1.8. Nitrification inhibitor used	42
3.2. Methods	42
3.2.1. Preparation standard inoculums	43
3.2.2. The optical density of growth microorganisms using in bioremediation of heavy metals and pesticides	43
3.2.3. The specific growth rate (μ) (h^{-1}) and doubling time (t_d) (h)	43
3.3. Agricultural wastewater analysis	44
3.3.1. Physical analysis	44
3.3.1.1 Temperature	44

3.3.1.2. The hydrogen ion concentration (PH)	44
3.3.1.3. Electric conductivity (EC)	44
3.3.1.4. Total Solids (TS)	44
3.3.1.5. Total Suspended Solids (TSS)	45
3.3.2. Chemical analysis	45
3.3.2.1. Chemical Oxygen Demand (COD)	45
3.3.2.2. Biochemical Oxygen Demand (BOD)	46
3.3.2.3. Total phosphorus	46
3.3.2.4. Total nitrogen	46
3.3.2.5. Total potassium	46
3.3.2.6. Heavy metals analysis	47
3.3.2.7. Determination of the pesticide residues	47
3.3.2.8. Determination of NH4+, NO2- and NO3—N in wastewater samples homogenized sample were determined using calorimetric methods	47
3.3.2.8.1. Ammoninacel nitrogen (NH ₄ +-N) determination	47
3.3.2.8.2. Determination of NO ₂ — - N	48
3.3.2.8.3. Determination of NO ₃ — - N	48
3.3.2.9. Microbiological examinations	49
3.3.2.9.1. Total coliform	49
3.3.2.9.2. Fecal coliform	49
3.3.2.9.3. Salmonella and Shigella (SS)	49
3.4. Antagonistic action of the used strains against pathogenic microbial pollutants	49
3.5. Heavy metals biosorption by the PGPRs	50
3.6. Pot experiment	51
3.6.1. Irrigation	53
3.6.2. First experiment: Data recorded on <i>Gladiolas grandiflorus cv.</i>	53
3.6.2.1. Vegetative growth parameters	53

3.6.2.2. Flowering parameters
3.6.2.3. Corms and cormlets productivity
3.6.2.4. Chemical constituents
3.6.3. Second experiment: Data recorded on <i>Mentha viridis</i> cv
3.6.3.1. Plant morphology
3.6.3.2. Plant parameters
3.6.3.2.3. Root growth parameters
3.6.3.2.4. Chemical constituents
3.6.3.2.5. Analysis of volatile oil
3.6.4. Chemical analysis
3.6.4.1. Leaf pigments (chlorophylls a& b, and carotenoids)
3.6.4.2. Determination of macro elements (N, P and K)
3.6.4.2.1. Determination of nitrogen (N)
3.6.4.2.2. Determination of phosphorus (P)
3.6.4.2.3. Determination of potassium (K)
3.6.4.2.3. Determination of carbohydrates
3.6.5. Enzymatic activities assay
3.6.5.1. Dehaydroginas activity in the used soil
3.6.6. Statistical analysis of data
3.6.7. Molecular analysis
3.6.7.1. DNA extraction
3.6.7.2. PCR for 16s rRNA gene sequence of the isolates
3.6.7.3. PCR electrophoresis
3.6.7.4. Sequencing of the cDNA fragments
3.6.7.5. Identification of the cDNA fragments and protein product(s) homologous to the cDNA using the NCBI database
4. RESULTS AND DISCUSSION
4.1. Sample analysis
4.1.1. Physical analysis

4.1.2. Chemical analysis	68
4.1.3. Microbiological analysis	73
4.2. Application some processes to removing of pollutants in agricultural waste water in vitro	78
4.2.1. Chemical treatments using thiourea as nitrification inhibitor	78
4.2.2. Biological Treatment	79
4.2.2.1. Treatments of some PGPRs to adsorption heavy metals in agricultural waste water	81
4.2.2.2. Treatments of some PGPRs to degrading pesticides found in agricultural waste water	81
4.2.2.3. Bioremediation of some pathogenic bacteria from wastewater using PGPRs in vitro	85
4.2.2.3.1. Antagonistic between PGPRs and pathogenic bacteria	85
4.3. Bioremediation of homogenized drainage water using physical, chemical and biological treatments before application in pot experiments	100
4.3.1. Aeration	100
4.3.2. Physical and chemical analysis of different treatments on homogenized agricultural wastewater	100
4.3.3. Microbiological analysis	104
4.4. Soils used in pot experiments	108
4.5. Pot experiments	108
4.5.1. Effect of irrigation with treated of agricultural drainage water on the growth, flowering, corm production and chemical composition of <i>Gladiolus grandiflorus</i> cv. plants	109
4.5.1.1. Plant growth parameters	109
4.5.1.2. Chemical analysis	113
4.5.1.2.1. Chlorophyll a, b and carotenoids	113
4.5.1.2.2. Determination of nitrogen, phosphors and potassium (N, P and K) in plant	114
4.5.1.2.3. Determination of ammonia, nitrite and nitrate	120

4.5.1.3. Count of microorganisms in soil after irrigation with treated water	120
4.5.1.4. Determination of enzyme activity	126
4.5.2. Effect of various treatment of agricultural waste water on the vegetative growth, yield, volatile oil productivity and its components and chemical analysis of spearmint (<i>Mentha viridis</i> cv.)	128
4.5.2.1. Morphological parameters	128
4.5.2.2. Chemical composition	130
4.5.2.2.1. Chlorophyll a, b and carotenoids	130
4.5.2.2.2. Determination nitrogen, phosphors and potassium (N, P and K) in plant	135
4.5.2.2.3. Determination of ammonia, nitrite and nitrate	135
4.5.2.3. Count of microorganisms in soil after irrigation with treated water	140
4.5.2.4. Determination of enzyme activity	140
4.5.2.5. Effect of various treatments on volatile oil productivity of spearmint (<i>Mentha viridis</i> cv.)	144
4.5.2.5.1. Volatile oil accumulation	145
4.5.2.5.2. Chemical composition of <i>Mentha viridis</i> oil	140
5. Human pathogenic bacterial strains Identification	155
5.1. PCR for 16S gene	155
5.2. Sequencing of selected DD cDNA fragments	150
6. SUMMERYAND CONCLUSION	161
7. REFERENCES	172
ARABIC SUMMARY	200

LIST OF TABLES

Γable No.		Page
1	Locations of samples used in this study	32
2	Assessment of some metabolic activities of the selected strains	34
3	Physico-chemical analysis of the used soilin pot experiments	41
4	The treatments of both experiments were arranged as follow	52
5	PH of the obtained samplesduring winter and summer session	62
6	(The salinity EC dSm ⁻¹) of the obtained samplesduring winter and summer session	63
7	Determination of Total Solids (TS mg/L) and Total Suspended Soilds (TSS mg/L) in wastewater samples collected from different sites along El Mohete drain during summer and winter season.	66
8	Determination of Chemical Oxygen Demand (COD mg/L) and Biochemical Oxygen Demand (BOD mg/L) in wastewater samples collected from different sites along El-Mohete drain during summer and winter season	67
9	The Seasonal variation of Nitrogen sources (NH ₄ , NO ₂ , NO ₃) ppm in wastewater samples during winter and summer season	69
10	Concentration of heavy metals in wastewater samples collected from different sites along El Mohete drain	71
11	Concentration of pesticide residues µg/Lin wastewater samples collected from different sites along El-Mohete drain.	74
12	The total and pathogenic bacterial counts (CFU/ml) in winter and summer season	76
13	Chemical treatments using thiourea as nitrification inhibitor	78

14	Continued chemical treatments using thiourea as nitrification inhibitor	78
15	The growth of some PGPRs and pathogenic bacteria in nutrient broth during 48 h at 30°C	79
16	The growth of PGPRs in drainage water incubated for 48 h at 30°C	80
17	Heavy metals (μ g/L) concentration in *Homogenized sample of agricultural wastewater using growing PGPR after incubation for 48 hr at 30 $^{\circ}$ C	83
18	Pesticide residues in homogenized agricultural wastewater sample using growing PGPR incubated for 48 hr at 30° C	84
19	Antagonistic action between single strain of PGPRs and pathogenic bacteria (<i>E.coli</i> and <i>Salmonella</i> sp) incubated for 48h at30°C	86
20	Antagonistic action between dual strains of PGPRs and pathogenic bacteria (<i>E.coli</i> and <i>Salmonella</i>) incubated for 48h at 30°C	88
21	The antagonistic action between three mix strains PGPR and some pathogenic bacteria	92
22	The antagonistic action between four mix strains PGPR and some pathogenic bacteria	94
23	The antagonistic action between five mix strains PGPR and some pathogenic bacteria	96
24	The antagonistic action between six mix strains PGPR and some pathogenic bacteria	97
25	The antagonistic action between seven mix strains PGPR and some pathogenic bacteria	98
26	Chemical analysis (ppm) of Homogenized agricultural wastewater	101
27	Determination of physical and chemical analyses in drainage water used in plant irrigation after addition of different treatments for 48 h	102