ROLE OF 18F-FDG-PET/CT SCANNING IN MANAGEMENT OF PATIENTS WITH LOCALLY ADVANCED HEAD AND NECK CANCER

Thesis

Submitted for Partial Fulfillment of the MD Degree in Clinical Oncology and Nuclear Medicine

By *Mai Mohamed Ibrahim Abdel Hadi*

Supervised By

Prof. Dr. Amin El-Sayed Amin

Prof. of Medical Physics Faculty of Medicine-Ain Shams University

Prof. Dr. Khalid Elhusseiny Nasr

Prof. of Clinical Oncology and Nuclear Medicine Faculty of Medicine- Ain Shams University

Prof. Dr. Nadia Ahmed Abd El Moneim Mohamed

Prof. of Clinical Oncology –Department of Cancer Management and Research -Medical Research Institute-Alexandria University

Faculty of Medicine
Ain Shams University
2018

Praise to "Allah", the Most Gracious and the Most Merciful Who Guides Us to the Right Way.

I would like to express my endless gratitude and appreciation to **Prof. Dr.**Amin El-Sayed Amin, Prof. of Medical Physics, Faculty of medicine, Ain Shams

University for giving me the honor of working under his supervision and
providing me with a lot of encouragement and support.

My special thanks and deep gratitude to **Prof. Dr. Khalid Elhusseiny Nasr,** Prof. of Clinical Oncology and Nuclear Medicine, Faculty of medicine, Ain Shams University, for his generous assistance and valuable guidance and unfailing efforts during the whole period of the study.

This work would have never been completed without the great help, close supervision offered by **Prof. Dr. Nadia Ahmed Abd El Moneim Mohamed**, Prof. of Clinical Oncology, Department of Cancer Management and Research, Medical Research Institute, Alexandria University.

I'd like to thank **Prof. Dr. Eman Mohamed Fouad Al Sayed,** Prof. of Clinical Oncology and Nuclear Medicine, Faculty of medicine, Ain Shams University, for her great effort and support to perform this work.

I'm also thankful to all staff members and to my colleagues in the Clinical Oncology and Nuclear Medicine Department for their help.

I'm grateful to those whow taught us how to be doctors with theier Courage & patience; the patients. My sincere thanks to all patients participated in this study.

Last but not least, my hard thanks to my family especially my mother and my husband who lightened up my life, and always supported me.

LIST OF CONTENTS

Chap	oter	Page
ACK	NOWLEDGMENT	i
LIST	OF CONTENTS	ii
LIST	OF TABLES	iii
LIST	OF FIGURES	v
LIST	OF ABBREVIATIONS	vi
I.	INTRODUCTION	1
II.	AIM OF THE WORK	7
III.	REVIEW OF LITERATUR	E8
	Epidemiology and Risk Factors	8
	Anatomy	12
	Staging	22
	Diagnosis	32
	Management	52
IV.	PATIENTS AND METHOD	S 67
V.	RESULTS	76
VI.	DISCUSSION	115
VII.	SUMMARY	129
VIII.		D RECOMMENDATIONS132
IX.	REFERENCES	134
	ARABIC SUMMARY	

LIST OF TABLES

Table		Page			
(1)	Histological grading of HNSCC	22			
(2)	Lip and Oral cavity staging				
(3)	Lymph node staging other than Nasopharynx and distant metastasis				
(4)	TNM Staging groups rather than nasopharynx				
(5)	TNM Stages of Pharynx				
(6)	Lymph node metastasis from Nasopharynx				
(7)	A)TNM staging of the larynx	28			
(7)	B) Continued- TNM staging of the larynx	29			
(8)	TNM staging of the Nasal cavity and paranasal sinuses				
(9)	TNM staging of the Major salivary glands				
(10)	FDG-PET for radiotherapy target volumes delineation for head and neck cancer				
(11)	Distribution of the studied cases according to patient characteristics	77			
(12)	Distribution of the studied cases according to site	78			
(13)	Distribution of the studied cases according to T, N and M				
(14)	Distribution of the studied cases according to clinical stage	84			
(15)	Distribution of the studied cases according to PET stage	84			
(16)	Changes of pretreatment clinical stage related to PET/CT	85			
(17)	Descriptive analysis of the studied cases according to different irradiated volumes	87			
(18)	Descriptive analysis of the Gross tumor volumes using CT scan (C-GTV) versus PET/CT (PET-GTV) in studied cases				
(19)	Descriptive analysis of the studied cases according to Gross tumor volumes using CTscan (C-GTV) versus PET/CT (PET-GTV)	91			

(20)	Descriptive analysis of the studied cases according to Clinical target volumes using CT scan (CTV-Total) versus PET/CT (PET-CTV)				
(21)	Descriptive analysis of the studied cases according to Planning target volumes using CTscan (PTV) versus PET/CT (PTV-PET)				
(22)	Descriptive analysis of the studied cases according to Planning target volumes Boosts using CTscan (PTV-Boost) versus PET/CT (PTV-PET-Boost)				
(23)	Descriptive analysis of the studied cases according to Gross tumor volumes of neck nodes on both sides using CTscan (C-GTV-LN) versus PET/CT (PET-GTV-LN)				
(24)	Distribution of the studied cases according to concomitant therapy				
	a)Distribution of the studied cases according to clinical response	99			
(25)	b) Distribution of the studied cases according to PET-response				
	c) Comparison between clinical response using CT scan vs PET				
(26)	Relation between PET response and PET-GTV				
(27)	Relation between clinical response and C-GTV	102			
	a)Distribution of the studied cases according to Type and Grade of acute toxicities	109			
(28)	b)Comparison between the two studied groups according to Type and Grade of acute toxicities				
	c)Comparison between the two studied groups according to Type and Grade of acute toxicities				
(29)	a)Distribution of the studied cases according to Type and Grade of late toxicities	112			
	b)Comparison between the two studied groups according to xerostomia and skin				
(30)	Relation between clinical response and C-GTV	114			

LIST OF FIGURES

Figure		Page
(1)	a)Anatomic Sites and Subsites of the Head and Neck	14
	b)Anatomic Sites and Subsites of the Head and Neck	14
(2)	Paranasal Sinuses Anatomy	19
(3)	Levels of Cervical Lymphatic drainage	21
(4)	4) A T4a oral and base of tongue squamous cell carcinoma	
	(CT) versus PET/CT	
(5)	Nasopharyngeal carcinoma (CT) versus PET/CT	40
(6)	Carcinoma of unknown primary	41
(7)	Complete treatment response at the primary tumor site.	43
(8)	Metachronous second primary tumor	45
(9)	Hard palate T3 lesion.	79
(10)	Nasopharyngeal Carcinoma by PET/CT and MRI	79
(11)	Locally advanced Squamous cell carcinoma of left buccal	79
	mucosa	
(12)	Case of Nasopharyngeal carcinoma. On left side CT	80
	images and on right side the PET images	
(13)	Case of Nasopharyngeal carcinoma (CT) versus PET/CT	80
(14)	Combined PET/CT images GTV-PET of Neck Nodes	81
(15)	MRI neck of a T3N3M0 Ca nasopharynx	81
(16)	GTVs at Nasopharynx and different levels of neck nodes	88
	basins	
(17)	Stage III Ca Larynx	89
(18)	Ca nasopharynx. Delineated targets and organs at risk in	92
	3D projection	
(19)	Radiation fields and isodose curves in a case of nasopharynx and neck nodes	92
(20)	Ca Larynx PTV-Boosts	95
(21)	Follow up PET/CT to evaluate response	103
(22)	DVH of a case of Ca Nasopharynx	107

LIST OF ABBREVIATIONS

18.F-FDG- PET 18 F- Fluorodeoxyglucose positron Emission

CT Tomography/ computed temography

CECT : Contrast-enhanced computed tomography

CI : Conformity Index

CR : Complet Response

CT : Computed Tomography

CTV : Clinical Target volume

DVH : Dose Volume Histogram

ECOT : Eastern Cooperative Oncology Group

FNAB : Fine Needle Aspiration Biopsy

FNAC : Fine Needle Aspiration Cytology

GTV : Gross target volume

H&N : Head and Neck

HNC : Head and Neck Cancer

HNSCC : Head and Neck Squamous Cell Carcinoma

HPV : Human Papilloma Virus

IMRI : Intensity Modulated Radiation Therapy

MBI : Narrow Band Imaging

MRI : Magnetic Resonance Imaging

MRS : Magnetic Resonance Spectroscopy

NCCN : National Comprehensive Cancer Network

NTCP : Normal Tissue Complication Probability

OAR : Organs at Risk

OB : Open Biopsy

PD : Progressive Disease

PET : Positron Emission Tomography

PR : Partial Response

PTV : Planning Target Volume

RECIST : Response Evaluation Criteria in Solid Tumors

RT : Radio-Therapy

SD : Stable Disease

SPECT : Single Photon Emission Computed Tomography

TCP : Tumor Control Probability

TNM : Tumor- Nodes- Metastases

TSH : Thyroid Stinulating Hormon

US : Ultrasound

USCB : Ultrasound-Guided Core Biopsy

INTRODUCTION

Head and neck cancers accounted for approximately 4% to 5% of all the malignant diseases (Al-Ibraheem et al., 2009). Head and neck squamous cell carcinoma (HNSCC) comprises majority of head and (HNC). neck the vast cancer Unfortunately, at the time of initial diagnosis more than 50% of patients already present with regional nodal metastases or even distant metastases. For all stages, the 5-year survival is approximately 50%. Of patients for whom therapy fails, 90% will have recurrent disease within the first 2 years after treatment. The median survival of patients with local or metastatic recurrent disease is 6 months (Bujenovic, 2004).

Oncologic imaging plays an important role in head and neck cancers as imaging findings can aid significantly detection, staging, restaging, and therapy response assessment of these tumors (*Bujenovic*, 2004, *Al-Ibraheem et al.*, 2009).

Morphologic imaging with computed tomography (CT) and/or magnetic resonance imaging (MRI) with intravenous contrast are often performed either prior to pan-endoscopy to noninvasively assess the aero-digestive tract or afterwards to provide information about primary tumor size, infiltration,

involvement of surrounding structures, and regional nodal involvement. There is growing evidence, however, that these modalities have limitations in their diagnostic accuracy. CT and MR imaging rely on criteria of contrast-enhancement patterns and nodal size for detection of lymph node metastases which are not specific and may escape detection of metastases within normal size lymph nodes (*Al-Ibraheem et al.*, 2009).

Treatment is complex for head and neck cancer. The specific site of the disease, stage and pathologic findings guide the treatment i.e the appropriate surgical procedure, radiation targets, dose, fractionation and indication of chemotherapy (NCCN guidelines-2013, head and neck cancer). Single modality treatment with surgery or radiotherapy is generally recommended for approximately 30-40% of patients diagnosed with early stage disease (stage I-II). The two modalities result in similar survival in these individuals. In contrast, combined generally modality therapy the is recommended for approximately 60% of the patients with locally or regionally advanced disease at diagnosis (NCCN guidelines-2013, head and neck cancer). This is because for most cases radiation is at least equivalent to surgery and preserves a greater degree of function (Sessions et al., 2005).

Treatment of cancer with radiation aims at eradication of the tumor while preserving normal tissue (organ) function. This requires spatially accurate visualization of tumor in relation to the surrounding healthy structures. Computed tomography the primary imaging modality for image based radiotherapy treatment planning. With the inclusion of many newer imaging modalities, each with unique diagnostic capabilities, multi-modality imaging is the current buzzword in radiotherapy. Imaging modalities like magnetic resonance imaging (MRI) & magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), ultrasound imaging and molecular imaging are increasingly incorporated into radiotherapy treatment planning. Additionally, treatment evaluation tools in radiotherapy such as dose volume histogram (DVH), tumor control probability (TCP), normal tissue complication probability (NTCP) and conformity index (CI) completely depend upon the imaging modality used for treatment planning (*Prabhakar et al.*, 2007; Al-Ibraheem et al, 2009).

Positron Emission Tomography (PET) has been increasingly used in various fields of medicine. It has found its role in the diagnosis, staging, prognosis, treatment planning and evaluation of treatment response. The incorporation of PET in

radiotherapy treatment planning has revolutionized the field of radiation oncology (*Prabhakar et al, 2007*).

With the introduction of advanced radiotherapy treatment techniques like 3-D conformal radiotherapy (3-D CRT) and intensity modulated radiotherapy (IMRT), it is of utmost importance to delineate the target volume precisely in order to achieve a good tumor control (*Prabhakar et al, 2007*). As of now, CT is the best imaging modality for 3-D treatment planning as it provides information about the tissue densities in the form of electron density which is required for radiotherapy dose calculation. To utilize PET in radiotherapy, it should be fused either with CT or MRI. An integrated PET-CT is the best option, it provides precise localization of lesions and improves the standardization of volume delineation compared with that of CT alone (Solberg et al, 2004). Using PET-CT in radiotherapy planning reducing interobserver variability in target delineation, and modifying the extension of gross tumor volume (GTV), clinical tumor volume (CTV) and planning target volume (PTV) for both primary tumor and regional lymph nodes, potentially, allowing additional dose escalation. In some cases, the intent of treatment could also change from curative to palliative when distant metastases have been detected by PET (Alauddin, 2012; Al-Ibraheem et al., 2009).

In order to use the PET-CT data for radiotherapy treatment planning, the scanner must be equipped with a flatbed insert as the radiation treatment is performed with patients on a flat couch (*Ireland et al.*, 2007).

One of the most controversial and challenging issues in applying PET/CT in radiation planning is contouring the outline of the tumor. Changing the PET window level can lead to a considerable overestimation or underestimation of the target volume. However, several techniques including threshold-based methods have been suggested and used, but still consensus needs to be met. Forty or fifty percent of the tumor/image maximum intensity (SUVmax) has been used for contouring by several groups (Scarfone et al., 2004). Others used normalized volumes according to liver uptake (*El-Bassiouni et al.*, 2007). Wang et al. used an arbitrary SUV of 2.5 as a basis for contouring (Wang et al., 2006). Berson et al. suggested in a recent report that developing an institutional contouring protocol for PET/CT planning is highly treatment recommended to reduce inter-observer variability (Berson et al., 2009).

Even with PET, one must not only consider the GTV but also must continue to estimate subclinical involvement (the

CTV). Subclinical disease usually is lymphatic or perineural invasion and by lowering the upper threshold of the PET data this can be detected. In a study done by Breen et al, the addition of PET-CT to GTV (primary site) delineation of head and neck cancers does not change the volume of the GTV as observed on CT but it may demonstrate differences in neck node delineation and in other disease sites (*Breen et al.*, 2007).

Schwartz et al has shown that the addition of 18F-FDG-PET is superior to CT alone in geographic localization of diseased neck nodes, with sensitivity of 96% and specificity of 98.5% in nodal level staging (*Schwartz et al.*, 2005).

FDG-PET has also been demonstrated to be a prognostic indicator of recurrence in head and neck cancer (*Min et al.*, 2016). The quantitative assessment of changes in tumor metabolic activity provided by FDG-PET allows monitoring of response to cancer treatment (*Doot et al.*, 2014).