

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Time Dependent Behaviour of High Strength Concrete Beams

by

Osama Ehab Mohmed Abd El-Salam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
CIVIL ENGINEERING
(STRUCTURES)

B 0107

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2000

Time Dependent Behaviour of High Strength Concrete Beams

by

Osama Ehab Mohmed Abd El-Salam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
CIVIL ENGINEERING
(STRUCTURES)

Under the Supervision of

ProfyDr. Mohamed Elsaid Issa

Prof. of Reinforced Concrete Structures
Dept. of Structural Engineering

Cairo University

Dr.Ahmed Hassan Abdel-kareem

Associate Professor
Dept. of Civil Engineering
Benha High Institute of Technology

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2000

Time dependent Behaviour of High Strength Concrete Bravia

CONTRACTOR STATE AND AND ASSESSED FOR MARKETS

A Thesis rabon today the the property of the early a series of the early and the control of the

DOMESTAN DESTRUCTION

To and lyroged cuts rate f

化邻氯 化邻氯苯酚 网络花线类 网络 医硬体

resented address.

ta be test to switce that cheft

in year I had no water to make the

Prof. of Removed Concrete Structure Rep. of Construct Conserved Collect Wiverity

Time Dependent Behaviour of High Strength Concrete Beams

by

Osama Ehab Mohmed Abd El-Salam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
CIVIL ENGINEERING
(STRUCTURES)

Approved by the

Examining Committee:

Prof. Dr. Mohamed Elsaid Issa, Thesis Main Advisor

Prof. Dr. Moiner Mohmed Kamal, Member

Prof. Dr. Moustafa Fouaid El-Kafrawy, Member.

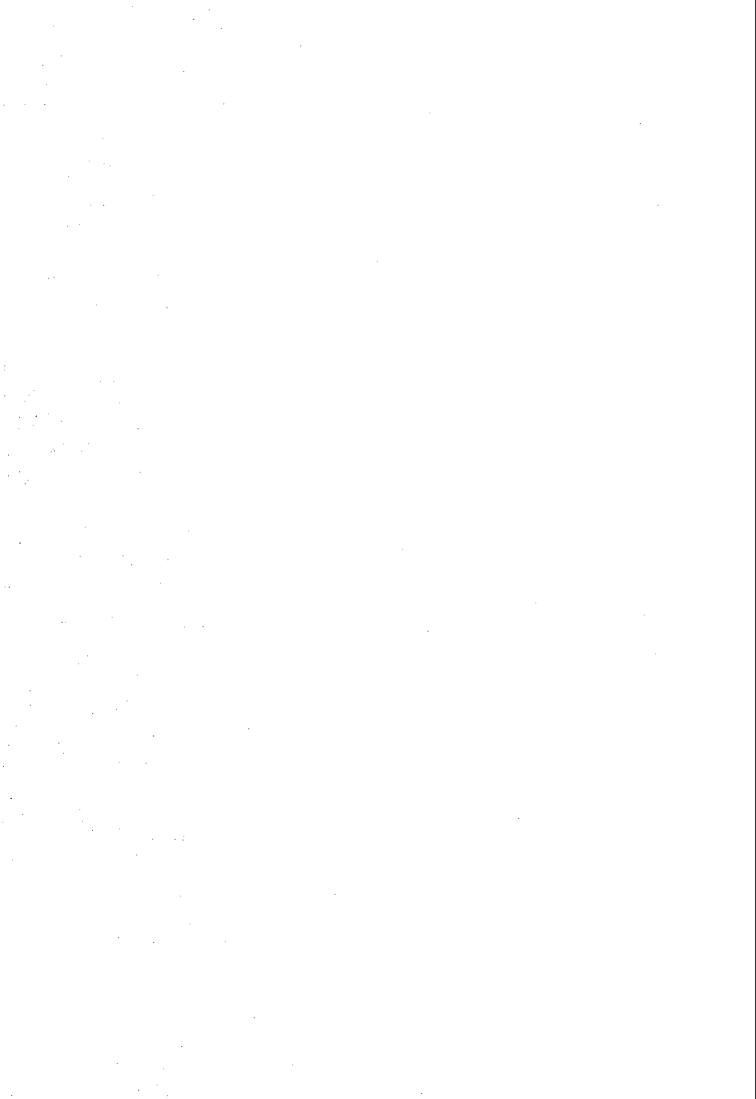
FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2000

Acknowledgements

The author wishes to express his deep thanks to Prof. Dr. Mohamed Elsaid Issa, Professor of Reinforced Concrete Structures, Faculty of Engineering Cairo University, for his supervision, guidance encouragement and sincere help.

Thanks are also extended to Dr. Ahmed A. Hassan, Ass. Professor Civil Engineering Dept., Banha Technology Inst. For his supervision, discussions given to the study.

The author wishes also to express his deep gratitude to Dr. Yehia Abd El-Meged, Ass. Professor (GOHBR), for his assistance in carrying out the laboratory work.


Many thanks all given to Engineers: Nagil Antir, Shahr Mosa, Tayser Kamal and R.C. lab. Staff for there assistants in the laboratory during the test period.

ABSTRACT

Over the past several years, development in structural materials such as prestressed concrete and the use of high-strength steel, and the use of methods of design such as ultimate strength, have led to a progressive increase in the strength of the concrete used in structures. Therefore, interest in high-strength concrete has increased greatly.

The substitution of High-Strength-Concrete for the Normal-Strength-Concrete might significantly reduce the cost. In addition, the amount of compressive steel reinforcement might be substantially reduced. Reduction in span-to-depth ratio might also be possible in long-span reinforced and prestressed concrete.

With the continuous development in concrete as a primary construction material and with the recent development of the production of High-Strength-Concrete (H-S-C), a natural tendency would be to exploit a higher proportion of the strength of the concrete. Therefore, it is important to know the behaviour of High-Strength-Concrete under stress and sustained loads above the ordinary normal working stress. Most of the previous studies on the time-dependent-deflection were carried out at low stress levels compared to the short-term ultimate of the normal concrete. In this research High-Strength-Concrete beams with three compressive strengths were tested under different percentages of sustained ultimate loads, and different percentages of compression reinforcement, for long period of time.

