Copper State Among Patients Newly Diagnosed With Myelodysplastic Syndrome

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By

Hebatullah Magdy Mahmoud Fares M.B.B.CH

Faculty of Medicine Ain Shams University

Under Supervision of

Prof. Dr. Suzan Kamal Hussein

Professor of internal medicine and hematology Faculty of Medicine Ain Shams University

Prof. Dr. Nevien Nabil Mostafa

Ass. Professor of internal medicine and hematology Faculty of Medicine Ain Shams University

Dr. Hanaa Fathey AbdelSamee

Lecturer of internal medicine and hematology Faculty of Medicine Ain Shams University

> Faculty Of Medicine Ain Shams University 2016

First and for most, thanks to Allah, the most merciful the most gracious for helping me to complete this work.

In all gratitude, I extend my most sincere thanks to **Prof. Dr. Suzan Kamal El Din**, Professor of Internal Medicine and Clinical Haematology, Faculty of Medicine Ain Shams University, for her help, guidance, and valuable advices were a great encouragement throughout the work.

Sincere appreciation to **Prof.Dr.Nevine Nabil**Lecturer of Internal Medicine and Clinical Haematology,
Faculty of Medicine, Ain Shams University, for her valuable
encouragement and advice.

I am also thankful to **Dr.Hanaa Abdel Samee**, Lecturer of Internal Medicine and Haematology, Faculty of Medicine, Ain Shams University for her valuable supervision, co-operation and direction that extended throughout this work.

I would also like to express my sincere gratitude to **Dr.Nermine Tayseer**, Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University for his energetic help, expert guidance, valuable advices and continuous support.

I would also like to record my thanks and sincere gratitude to My Mother who always supported and encouraged me throughout my life.

List of Contents

		Page No.
•	Introduction	1
•	Aim of the Work	4
•	Review of Literature:	
	- Chapter 1: Myelodysplastic syndrome	5
	- Chapter 2: Copper	45
•	Patients and Methods	67
•	Results	75
•	Discussion	94
•	Summary and Conclusion	99
•	Recommendations	101
•	References	102
•	Arabic Summary	1

List of Figures

Figure N	o. Title	Page No.
Figure (1):	Shows that 50 % (25 patients) of patients included in the study were with hypercellular bone marrow, w (13 patients) were presented normocellular bone marrow and patients) were presented with a hypercellular bone marrow	presented while 26% and with 24% (12 pocellular
Figure (2):	Shows that, 7 patients (14%) were with anemia (group I), 7patients (14presented with anemia thrombocytopenia (group II). 2 patients (group III) and 34 patients (34presented with pancytopenia (group III) and group III and group II and group III and group II	4%) were and ents (4%) utropenia %) were
Figure (3):	Shows that copper level of the case from 5 to 110 μ g/dl with a mean (83.61 \pm 22 μ g/dl) and that of the group ranged from (71-110 μ g/d mean level (93 \pm 12.36 μ g/dl)	level of le control l) with a
Figure (4):	Shows that ceruloplasmin level of ranged from 50-75 pg/ml with a m of $(137.7 \pm 37.14 \text{ pg/ml})$ and the controls ranged from $(125\text{-}185 \text{ pg/m})$ mean level $(157.75\pm 17.65 \text{ pg/ml})$.	nean level at of the nl) with a

Figure (5):	Shows that no significant statistical difference between copper level of MDS cases included in the study and the cellularity of their bone marrow
Figure (6):	Shows no significant statistical difference between ceruloplasmin level and the cellularity of the MDS patients included in the study
Figure (7):	Shows significant statistical correlation between copper level of MDS patients and number of dysplastic lineages. The most significant correlation was found between copper level and MDS patients in group III having anemia and neutropenia
Figure (8):	Shows significant statistical correlation between ceruloplasmin level and number of dysplastic lineages. The most significant correlation was found between ceruloplasmin level and MDS patients in group III having anemia and neutropenia 85
Figure (9):	Shows no correlation between sex and copper level
Figure (10):	Shows significant correlation between haemoglobin level and copper level of MDS patients included in the study (P value= 0.002)

Figure (11):): Shows inverse strong statistical correlation	
	between copper level and platelet count of	
	MDS patients (P value<0.001)	88
Figure (12):	Shows significant correlation between	
	copper level and WBC count (P	
	value=0.03)	89
Figure (13):	Shows inverse statistical correlation	
	between coper level and platelet count of	
	MDS patients included in the study.(P	
	value=0.003)	92
Figure (14):	Shows significant statistical correlation	
	between copper level and ceruloplasmin	
	level of MDS patients conducted in the	
	study. (P value=0.001)	93

Tist of Tables

Table No	. Title Page	No.
Table (1):	French-American-British (FAB) Myelodys-plastic Syndrome (MDS) Classification System	16
Table (2):	World Health Organization Myelodysplastic Syndrome Classification and Criteria	19
Table (3):		
Table (4):	Myelodysplastic Syndrome - Revised International Prognostic Scoring System	24
Table (5):	Myelodysplastic Syndrome – Cytogenetic Prognosis from the Revised International Prognostic Scoring System	25
Table (6):	Myelodysplastic Syndrome Prognosis - Revised International Prognostic Scoring System	26
Table (7):	WHO prognostic scoring system	31
Table (8):	WPSS-prognostic risk categorie	31

Table (9):	Functions of cuproenzymes and copper-binding proteins	54
Table (10):	Standard atomic absorption condition for Copper	69
Table (11):	Standard flame emission conditions for Copper	70
Table (12):	Patients' demographic data	77
Table (13):	Shows number of patients presented with normocellular, hypercellular and hypocellular bone marrow	78
Table (14):	Shows number of patients presented with different forms of abnormal CBC	79
Table (15):	Correlation between copper level among cases and controls included in the study	80
Table (16):	Correlation between ceruloplasmin level among cases and controls included in the study	81
Table (17):	Correlation between copper level of cases and the bone marrow cellularity	82
Table (18):	Correlation between ceruloplasmin and bone marrow cellularity	83

Table (19):	Correlation between copper level and number of dysplastic lineages of MDS patients	4
Table (20):	Correlation between ceruloplasmin level and number of dysplastic lineages	5
Table (21):	Correlation between copper level and patients' sex	6
Table (22):	Correlation between copper level and hemoglobin	7
Table (23):	Correlation between copper level and platelet count	8
Table (24):	Correlation between copper level and WBC count	9
Table (25):	Correlation between copper level and MCV9	0
Table (26):	Correlation between ceruloplasmin level and WBCs	0
Table (27):	Correlation between ceruloplasmin level and baemoglobin level of the studied cases	1

Table (28):	Correlation between ceruloplasmin level and MCV	91
Table (29):	Correlation between ceruloplasmin level and platelet count	
Table (30)	: Correlation between copper level and ceruloplasmin level	93

List of abbreviations

AIT Alanine aminotransferase

AML Acute myeloid leukemia

AraC Aracytabine

AST Aspartate aminotransferase

AzaC Azacitidine

CML Chronic myeloid leukemia

CMML Chronic myelomonocytic leukemia

CMVCytomegalovirus

COXCytochrome-c oxidase

CpCeruloplasmin

ELISA Enzyme-linked immunosorbent assay

ESR Erythrocyte sedimentation rate

FAB French-American-British classification

FISH Fluorescence in situ Hybridization

HBHaemoglobin

HIV Human immunodeficiency virus

HSCT Homologous stem cell transplantation

ILInterleukin

IPSS International prognostic scoring system

IPSS-R Revised IPSS

JMMLJuvenile myelomonocytic leukemia

LDHLactic acid dehydrogenase

MCV Mean corpuscular volume

MDS Myelodysplastic syndrome

MNCBlood mononuclear cells

MTs Metallothioneins

NCCN National Comprehensive Cancer Network

PLTPlatelet

PNH..... Paroxysmal nocturnal haemoglobinuria

RARefractory anemia

RAEB Refractory anemia with excess blasts

RARS Refractory anemia with ringed sideroblasts

ROSReactive oxygen species

TGN The *trans*-Golgi network

TPN Total parentral nutrition

WBC White blood cell

WHO World health organization

WPSS WHO prognostic scoring system

Abstract: Copper State among patients newly diagnosed with myelodysplastic syndrome

Background: Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic disorders characterized by bone marrow failure, dysplasia, and an increased likelihood of evolution to acute myeloid leukemia (AML). Copper deficiency can be a very important treatable cause of a picture resembling MDS. A lot of cases have been reported through the years since the first case in 1994. Anemia and neutropenia caused by copper deficiency can be completely reversed by copper supplementation.

Result: Of 50 MDS patients included in the study,4 patients were diagnosed with copper deficiency. Low serum copper correlated with anemia (r= 0.424, P= 0.002) and low WBCs count (r=0.424, P= 0.030) and inversely strongly correlated with thrombocytopenia (r= - 0.595, P <0.001). A strong statistical correlation was also found between low serum copper and ceruloplasmin level (P=0.001).

Conclusion: copper deficiency should be kept in mind as a treatable reversible important differential diagnosis of myelodysplastic syndrome.

Keywords: myelodysplastic syndrome, copper deficiency, differential diagnosis, anemia, neutropenia, thrombocytopenia, ceruloplasmin.

INTRODUCTION

Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic disorders characterized by bone marrow failure, dysplasia, and an increased likelihood of evolution to acute myeloid leukemia (AML) (Malcovati and Nimer, 2008).

Common examples of erythroid dysplasia include megaloblastoid multinucleated red cell precursors, maturation with nuclear-cytoplasmic developmental nuclear budding or internuclear bridging, asynchrony, karryorhexis, ring sideroblasts, cytoplasmic vacuolization, and periodic acid- Schiff-stain positivity. Hypogranular (i.e., neutrophils, hypolobated pseudo-Pelger-Huët) neutrophils, small granulocytes, pseudo-Chediak Higashi granular inclusions, nuclear hypersegmentation, individual granulocytes containing both basophilic and eosinophilic granules ("eo-basos"), or dual esterase cytochemical staining characterize granulocyte dysplasia. Finally, megakaryocytic/ platelet dysplasia is manifest as micromega-karyocytes, hypolobated or alobated megakaryocytic nuclei, as multiple widely separated nuclei, and as size and granulation abnormalities of more mature platelets (Pfeilstöcker et al., 2005).

Such dysplastic changes can be seen in several clinical settings: reactive conditions, due to the injurious effects of a drug or other toxin; nutritional deficiencies, such as lack of B12 or folate; or the clonal, neoplastic disorders that are collectively termed the myelodysplastic syndromes (MDS). For decades, confidently distinguishing MDS from other malignant and non-malignant entities has proven challenging (Vardiman, 2006).

Copper deficiency is an underrecognized cause of anemia and neutropenia. Although the morphologic features of copper deficiency in the bone marrow, such as vacuolization of early granulocyte and erythroid precursors, as well as ringed sideroblasts, have been described (Mangles et al., 2007; Angotti et al., 2008), the diagnosis may be difficult owing to low prevalence, a low level of clinical suspicion, and overlapping morphologic features with myelodysplastic syndromes (MDS) (Koca et al., 2008).

Hematologic manifestations of copper deficiency include microcytic, normocytic, and macrocytic anemia. Severe absolute neutropenia is characteristic, and thrombocytopenia occurs only in a small subset of patients (Haddad et al., 2008).

A diagnosis of copper deficiency is usually established by measuring serum copper or ceruloplasmin levels.