Study of TGF\(\beta\)1 in a sample of Egyptian Children with Autism Spectrum Disorder

Thesis

Submitted for Partial Fulfillment of MSc. Degree in Pediatrics

By

Mohammed Khairy Farahat El said

M.B.B.Ch Faculty of Medicine, Ain Shams University

Under Supervision of Prof. Eman Amin Abdel-Aziz

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Walaa Youssef Youssef

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Marwa Matboly Sayed

Lecturer of Medical Biochemistry & Molecular Biology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2017

" قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا اللهِ اللهِ اللهِ اللهُ اللهِ اللهُ الْحَكِيمُ اللهُ الْحَكِيمُ الْحَلِيمُ الْحَكِيمُ الْحَلِيمُ الْحَكِيمُ الْحَلِيمُ الْحَلِيمُ الْحَلِيمُ الْحَلِيمُ الْحَلِيمُ الْحَلِيمُ الْحَلِيمُ الْحَلِيمُ الْحَلِيمُ الْحَلْمَ الْحَلْمَ الْحَلْمَ الْحَلْمَ الْحَلْمُ الْحُلْمُ الْحَلْمُ الْحَل

سورة البقرة (آية ٣٢)

ACKNOWLEDGMENT

First and foremost, thanks and praise to ALLAH, Most gracious, Most merciful.

I would like to express my deep gratitude, thanks and respect to our eminent **Prof. Eman Amin Abdel-Aziz**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University for granting me the privilege of working under her supervision and for her great encouragement and unfailing tender advice throughout this work and throughout my career. She is a great model for the ideal psychiatrist.

No words can be sufficient to express my deep gratitude, admire and appreciation to **Dr. Walaa Youssef Youssef**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University for her great support, valuable advice and continuous encouragement. Her sincere effort and help will never be forgotten.

I am greatly thankful to **Dr. Marwa Matboly Sayed,** Lecturer of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University for her great effort, kind help, great support, careful supervision, continuous advice and guidance.

I would like to thank my patients and their parents for their cooperation and trust. I wish them all the best of health.

Last but not by any means least, I would like to express my warm gratitude to all the members of my family for their kindness, trust, unfailing support and much needed encouragement.

Mohammed Khairy

List of contents

List of tables	I
List of figures	III
List of abbreviations	VII
Introduction	1
Aim of work	3
Review of literature	
• Autism Spectrum Disorder (ASD)	4
• Transforming growth factor beta (TO	GF-β55
ASD and altered immune function	62
Patients & Methods	72
Results	85
Discussion	113
Summary & Conclusion	137
Recommendations	143
References	144
Arabic summary	

List of Tables:

Table No.	Title Page No.
Table (1):	Severity levels for autism spectrum disorder 28
Table (2):	Psychological pharmacotherapy options for treatment of mal-adaptive behaviors with ASD 47
Table (3):	statistical comparison between autistic cases and controls as regards studied non-parametric variables85
Table (4):	statistical comparison between autistic cases and controls as regards lethargy, stereotyping, hyperactivity, sleep problems, GIT problems and sphincteric control
Table (5):	the statistical comparison between studied groups as regards age, maternal age at conception, birth weight, breast feeding duration, artificial feeding duration, onset of weaning and IQ
Table (6):	the median value and range of the serum TGFβ1 protein level
Table (7):	Estimation of the serum level of TGF-β1 protein below cutoff value among both groups of the study 97
Table (8):	the relation between Autism severity and TGF-β1 level
Table (9):	TGF-β1 serum concentration (pg/ml) in relation to different studied non-parametric variables among children with Autism

List of Tables (cont...)

Table No.	Title	Page No.
-----------	-------	----------

Table (10): relation between TGF- β 1 serum concentration (pg/ml) and the clinical characteristics in the autistic cases 102

Table (11):	Correlation be	tween serur	n TGF-β1	protein	levels
	(pg/ml) with ag	e, maternal	age, breast	feeding d	uration
	(months), artificial feeding duration (months), onset of weaning (months) and number of sessions of oxygen				
	therapy in the st	udied autisti	c cases	1	05
Table (12):	Correlation bet (pg/ml) and CA			•	-
	autistic cases			1	06
Table (13):				•	-
	(pg/ml), subsca		• •		20
	therapy in the st	udied autisti	c cases:	1	11

List of Figures

Fig. No.	Title	Page No.
Figure (1):	maturation of TFG- β molecule	56
Figure (2):	TGF- β signaling	57
Figure (3):	Proposed immunological basis of som	ne forms of autism63
Figure (4):	Bar chart showing diagrammatic recurrent infection in the studied car group	ses & the control

Figure (5):	Bar chart showing diagrammatic representation of rural and urban distribution in the studied cases & the control group
Figure (6):	Bar chart showing diagrammatic representation of stereotyping in the studied cases & the control group89
Figure (7):	Bar chart showing diagrammatic representation of hyperactivity in the studied cases & the control group Functional MRI abnormalities observed in ASD89
Figure (8):	Bar chart showing diagrammatic representation of sleep problems in the studied cases & the control group90
Figure (9):	Bar chart showing diagrammatic representation of GIT problems in the studied cases & the control group90

List of Figures (Cont...)

O.M. 16.	Jule	Fuge 10.
Figure (10):	Bar chart showing diagrammatic represent frequency of positive or negative sphincter the studied cases & the control group	ric control in
Figure (11):	Bar chart showing diagrammatic represent mean value of breast feeding duration (mostudied cases & the control group	onths) in the
Figure (12):	Bar chart showing diagrammatic represent mean value of intelligence quotient (IQ) is cases & the control group	n the studied
Figure (13):	Box plot for the serum TGF-β1 protein	level in both

Figure (14):	Bar chart showing the mean value of the serum TGF- $\beta 1$ protein level in both groups95
Figure (15):	(ROC) Curve analysis and cutoff value for serum TGF- β1 protein level96
Figure (16):	Bar chart showing diagrammatic representation of the children with serum level of TGF- $\beta 1$ protein below cutoff value among both groups
Figure (17):	Bar chart showing diagrammatic representation of the mean of serum level of TGF- $\beta1$ (pg/ml) in relation to recurrent infection in the studied autistic cases

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (18):	Bar chart showing diagrammatic representation mean of serum level of TGF-β1 (pg/hyperbaric oxygen therapy in the studied	ml) in relation to
Figure (19):	Bar chart showing diagrammatic rether mean of serum level of TG relation to hyperactivity in the cases	F-β1 (pg/ml) in studied autistic
Figure (20):	Bar chart showing diagrammatic representation of serum level of TGF-β1 (pg/ml) in relation the studied autistic cases	ation to eye contact
Figure (21):	Scatter plots chart shows the correlation level of TGF-β1 (pg/ml) in relation to C studied autistic cases.	CARS scores in the
Figure (22):	Scatter plots chart shows the correlation level of TGF-β1 (pg/ml) in relation to studied autistic cases	IQ scores in the

Figure (23):	Scatter plots chart shows the correlation between serum
	level of TGF-β1 (pg/ml) in relation to Sensory/Cognitive
	Awareness subscale of ATEC in the studied autistic cases

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (24):	Scatter plots chart shows the correlevel of TGF-β1 (pg/ml) in relation/Behavior subscale of ATEC in the	n to Health /Physical studied autistic cases.
Figure (25):	Scatter plots chart shows the correlevel of TGF-β1 (pg/ml) in relation to the studied autistic cases	to ATEC total score in
Figure (26):	Scatter plots chart shows the correlevel of TGF-β1 (pg/ml) in relation/Behavior subscale of ATEC in the who received hyperbaric oxygen there	n to Health /Physical studied autistic cases

List of Abbreviations

A66.	Full Term
3di	Developmental, Dimensional and Diagnostic
	Interview
AAI	Animal-Assisted Therapy
ABA	Applied Behavior Analysis
ADHD	Attention deficit hyperactivity disorder
ADOS	Autism Diagnostic Observation Schedule
AEDs	Antiepileptic drugs
ALA	Alpha-linoleic acid
APA	American Psychiatric Association
APLS	Antiphospholipid Syndrome
ASDs	Autistic spectrum disorders
ATEC	Autism treatment evaluation checklist
ATX	Atomoxetine
BBB	Blood brain barrier
BMP	Bone morphogenetic proteins
CAM	Complementary and Alternative Medicine
cAMP	Cyclic adenosine monophosphate
CARS	Childhood autism rating scale
CARS2-HF	CARS2-High Functioning Version
CARS2-ST	CARS2-Standard Version
CBMNC	Cord blood mononuclear cell
CBT	Cognitive Behavioral Therapy
CC	Corpus Callosum
CDC	Center for Disease Control and prevention
CKIs	Cyclin-dependent kinase inhibitors
CMV	Cytomegalovirus
CNS	Central nervous system

CSF Cerebrospinal fluid

DAT Dopamine active transporter

DC Dendritic cell

DDT Dichlorodiphenyltrichloroethane

List of Abbreviations (Cont...)

Abb. Full Term

DHA Docosahexaenoic acidDIR Relationship-based model

DISCO Diagnostic Interview for Social and Communicative Disorders

DNA Deoxyribonucleic acid

DPT Diphtheria, Tetanus, Pertussis Vaccine

DSM Diagnostic and statistical manual of mental disorders

DSM-III-R Diagnostic and statistical manual of mental disorders third

edition-revised

DSM-IV Diagnostic and statistical manual of mental disorders – fourth

edition

DSMIV-TR Diagnostic and statistical manual of mental disorders – fourth

edition – text revision

DSM-V Diagnostic and statistical manual of mental disorders

fifth edition

DT Diphtheria and tetanus toxoidsVaccine

DTT Discrete Trial Training

DUI Daytime urinary incontinence

EAAT Equine-assisted activities and therapies

EC The endothelial cell
EEG Electroencephalography

eg For example

EIBI Early Intensive Behavioral Intervention
ELISA Enzyme-linked immunosorbent assay

EPAEisosapentaenoic acidEPSExtrapyramidal symptomsESDMEarly Start Denver Model

FDA Food and Drug Administration

FI Fecal incontinence

GABA Gamma amino butyric acid

GARS 2 Gilliam Autism Rating Scale Second Edition

List of Abbreviations (Cont...)

	,
Abb.	Full Term
GD	Gestational diabetes
GDF	Growth and differentiation factors
GFCF	Gluten free casein free
GI	Gastrointestinal
GIT	Gastrointestinal Tract
HAH	Halogenated Aaromatic Hy-drocarbons
HBOT	Hyperbaric oxygen therapy
IFN-y	Interferon gamma
Ig	Immunoglobulines
IGF-1	Insulin-like growth factor
IL	Interleuken
IQ	Intelligent quotient
ITC	Infant Toddler Checklist
IU	International unit
ITP	Idiopathic thrombocytopenic purpura
LAP	latency associated peptide
lb	Pound
LEAP	Learning Experiences, An Alternative Program
LTBPs	Latent TGF-β binding proteins
mcg	Micrograms
M-CHAT-R	Modified Checklist for Autism in Toddlers-Revised
mg	milligram
miRNA	Micro RNA
MMR	Measles, Mmumps, Rrubella Vaccine
MPH	Methylphenidate
MR	Mental retardation
MRI	Magnetic resonance imaging
mRNA	Messenger ribonucleic acid
NAC	N-Acetylcysteine
nAChR	Nicotinic acetylcholine receptor

List of Abbreviations (Cont...)

Nocturnal enuresis

NE

NK Natural killer

NO. Number

NTFs Neurotrophic factors

NREMS Non-rapid eye movement sleep

OCCUpational therapy
 Probability of variance
 PCP
 Primary care pediatrician

PDD Pervasive developmental disorders

PDD-NOS Pervasive developmental disorders not otherwise specified

PECS Picture Exchange Communication System

PET Positron emission tomography

Pg/ml Picograpm per meliliterPGD Pregestational diabetes

PIT Parent implemented training

PM Particulate matter

PPAR Peroxisome proliferator activated receptor gamma

PRT Pivotal Response Training

PT Parent training

PUFAs Polyunsaturated fatty acids

RDI Relationship Development Intervention

ROS Relative Oxygen Species

RRB Restrictive, Repetitive Behavior

SCD Specific carbohydrate diet

SCI Social communication and interaction

SD Standard deviation

SGAs Second generation antipsychotics

SI Sensory Integration
SIB Self-injurious behaviors
SP Streptavidin-Peroxidase
SRS Social Responsiveness Scale

List of Abbreviations (Cont...)

Abb. Full Term

SSRIs Selective serotonin reuptake inhibitors

TGFβ1 Transforming growth factor beta 1

Th T helper cell

TLE Temporal lobe epilepsy

TMS Transcranial Magnetic Stimulation

TNF-α Tumor necrosis factor alphaTPN Total parenteral nutrition

TPO Thyroid disease with anti-thyroid peroxidase

TZDs Thiazolidinediones

UCMSC Umbilical cord-derived mesenchymal stem cells

US United States

USA United States of America
VBI Verbal Behavior Intervention

VEGF Vascular endothelial growth factor

VPA Valporic acid

WHO World Health Organization

Introduction

Autism spectrum disorders (ASDs) represent a group of neurodevelopmental disorders characterized by impairments in verbal and non-verbal communication, social withdrawal and stereotypical behaviors, which may or may not be associated with cognitive deficits, self-injurious behaviors and other neurological comorbidities (*Salmi et al.*, 2013).

A dramatic rise in incidence of ASDs has occurred in the past 25 years. ASD has a current estimated prevalence of about 1 in 68 children aged 8 years; estimated prevalence was significantly higher among boys (23.6 per 1000) than among girls (5.3 per 1000) (*Christensen et al., 2016*). The exact etiology of autism remains unknown, it is likely to result from a complex combination of genetic, immunological and environmental susceptibility (*Cohen et al., 2005*).

There is growing awareness of an immunological involvement in children with ASD. Evidence of immune dysregulation has been observed in some individuals with ASD including increase levels of pro-inflammatory cytokines in brain tissue, CSF and plasma and increased production of pro-inflammatory cytokines by peripheral blood mononuclear cell culture when compared to typically developing control (*Ashwood et al.*, 2008).

Also, immunosuppressive cytokines are critical for immune homeostasis and transforming growth factor beta 1 (TGF β 1) is one of them and it is the most important immune regulator that can effectively control diverse aspects of the immune response. TGF- β 1 is a multifunctional immunosuppressive cytokine and has pivotal neurodevelopmental functions with potential therapeutic effects (*den Haan et al.*, 2007).