

FIB-4 and platelet indices as non invasive predictors of liver fibrosis in Egyptian patients with chronic hepatitis C virus infection

Thesis

Submitted for partial fulfillment of Master Degree in Tropical Medicine

By Muhammed Ashraf Ziedan M.B. B.CH

Under supervision of

Prof. Dr. Mohamed Kamal Shaker

Professor of Tropical Medicine Head of Tropical Medicine department Faculty of Medicine Ain-Shams University

General Dr. Medhat Hassan Elsahhar

Consultant of gastroenterology & hepatology Police Authority Hospitals

Dr. Ashraf Mohammad Al Breedy

Lecturer of Tropical Medicine Faculty of Medicine Ain-Shams University

> Faculty of Medicine Ain Shams University 2015

<u>Acknowledgement</u>

First of all gratitude is due to **Allah** the Almighty who guided and helped me in bringing this thesis to light which would have never been crowned by success without His Almighty ,the most merciful, the giver of all the knowledge we might reach any day.

I wish to express my deepest appreciation and sincere gratitude to Prof. Dr. Mohamed Kamal Shaker, Prof. of Tropical Medicine, Faculty of Medicine, Ain Shams University, Head of Tropical Medicine department ,Faculty of Medicine -Ain Shams University, for his continuous encouragement, kind supervision, valuable instructions and sincere advice which have been the main factors to complete this work. It was a great honor to me to work under his supervision.

I would also find no words enough to describe my feelings ,pride and thankfulness towards my role model **General Dr. Medhat Hassan Elsahhar**, Head of police authority hospitals, ex-director of Agouza police authority hospital and consultant of gastroenterology, liver and endoscopy. He is such a tutor and a father to me.

Words can never express my deepest gratitude, appreciation and greatest respect to **Dr. Ashraf Mohamed Al Breedy**, Lecturer of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his close supervision, continuous guidance, great help and indispensable advice in every step of this work. He has generously devoted much of his valuable time, experience and effort for planning and supervision of this work and for presenting it in an ideal form.

With considerate appreciation I express my great love to my parents and family.

FIB-4 and platelet indices as non invasive predictors of liver fibrosis in Egyptian patients with chronic hepatitis C virus infection

Protocol of thesis submitted for partial fulfillment of master degree in tropical medicine

Presented by

Muhammad Ashraf Ziedan M.B., B.Ch. Under Supervision of

Professor Doctor. Mohamed Kamal Shaker
Professor of Tropical Medicine
Head of Tropical Medicine department
Faculty of Medicine Ain-Shams University

General Dr. Medhat Hassan Elsahhar, MD

Consultant of gastroenterology & hepatology Police Authority Hospitals

Doctor. Ashraf Mohammad Al Breedy
Lecturer of Tropical Medicine
Faculty of Medicine Ain-Shams University

Faculty of Medicine
Ain Shams University
2014

Introduction

Due to the invasive nature of liver biopsy, there has been extensive interest in developing non-invasive tests to measure liver fibrosis. These alternatives can be used in clinical practice, with benefits in terms of cost, risk, and patient convenience (*Lai et al.*, *2011*). Clinically applicable non-invasive tests include radiological studies, transient elastography (TE), and serum markers.

Most noninvasive tests of liver fibrosis were developed with the aim of discriminating between "insignificant", (F0-F1) by METAVIR and clinically "significant" fibrosis (≥ F2) by METAVIR or for identifying or excluding established cirrhosis in patients with well compensated chronic liver disease. Both these aims are clinically the most relevant (*Strader et al., 2004*). Diagnosing or excluding cirrhosis has major implications for patient outcomes and mandates radiological screening every six months for hepatocellular carcinoma and endoscopy to rule out portal hypertension (*Schuppan and Afdhal, 2008*).

A variety of direct serum markers of fibrosis, reflecting either the deposition or the removal of extracellular matrix in the liver, as alpha-2-macroglobulin,

serum hyaluronate, laminin, collagenases and their inhibitors such as matrix metalloproteases and tissue inhibitory metalloprotease-1 (etc..). Indirect serum markers including prothrombin index, platelet count, and AST/ALT ratio have also been proposed (*Castera*, 2009).

The limitations of individual markers to assess liver fibrosis have led to the development of more sophisticated algorithms or indices combining the results of panels of markers as FibroTest. AST-to-Platelet Ratio Index (APRI), FibroIndex , FibroMeter, Forns, Hepascore (*Castera*, 2009), Fibro-α score (*Omran et al.*, 2011) and Fib-4 (*Sterling et al.*, 2006).

Mean platelet volume (MPV) and mean platelet diameter (MPD) are laboratory markers obtained from complete blood count (CBC) analysers in routine clinical practice. In the past, these were unnoticed indicators in CBC analysis. However, recent studies have yielded promising results for the effective use of these parameters. These studies have looked for a possible link between MPV and several inflammatory diseases such as myocardial infarction (*Chu et., 2010*), cerebrovascular disease (*Mayda-Domac et al., 2010*), ulcerative colitis (*Yuksel et., 2009*), shronic hepatitis B (*Ceylan et al., 2013*) and C infection (*Purnak et al., 2013*) and others.

Aim of the work:

The goal of the present study is to evaluate whether Fib 4 and other platelet indices would be useful in predicting degree of liver fibrosis in chronic hepatitis C infected patients.

Patients and methods:

This prospective cross sectional study will be conducted at Tropical Medicine department at Ain-Shams University Hospitals and the Police Hospital. Sixty patients with chronic hepatitis C (CHC) infection, undergoing liver biopsy as prerequisite before combined pegylated interferon and ribavirin treatment for HCV infection, will be recruited.

Exclusion criteria:

- 1- Other causes of chronic hepatitis, including autoimmune hepatitis, Wilson's disease and hemochromatosis, other viral hepatitis causes and HIV infection.
- 2- Alcohol use ($\geq 20 \text{ g/day}$).
- 3- Patients with conditions that might affect MPV and platelet count, including splenectomised patients, acute and chronic renal failure, chronic obstructive lung disease, hematologic disorders and malignancies were excluded from the study.

- 4- Patients receiving drugs such as inhibitors of platelet function including aspirin, ticlopidine, clopidogrel, non-steroid anti-inflammatory drugs.
- 5- Patients with low mean corpuscular volume in CBC analysis (MCV < 80 fL) since small red blood cells might be counted mistakenly as platelets by the analyser.

Methods:

All the following parameters will be done for all patients.

- 1. Full personal history taking and thorough clinical examination including measurement of body mass index.
- 2. Complete blood picture
- 3. Liver profile including alanine aminotransferase (ALT), aspartate aminotransferase (AST). Serum bilirubin, serum albumin, serum alkaline phosphatase and prothrombin time (PT).
- 4. HCV Ab and HBs Ag.
- 5. Random blood sugar
- 6. Renal function tests.
- 7. Alpha fetoprotein (AFP) level.
- 8. HCV RNA quantitative.
- 9. Abdominal ultrasound.

10.Liver biopsy and histopathological assessment

The following parameters will be studied as Noninvasive assessment of liver fibrosis:

- Mean platelet volume (MPV) and platelet distribution width (PDW) from the CBC.
- APRI test will be calculated using the following formula (*Wai et al.*, 3002): APRI = [(AST of the sample/normal upper limit AST) /platelets count (this should be in the range 0 to 500 or so if there are extra zeros, delete these before computing)]×100.
- FIB-4 index will be calculated using the following formula (*Sterling et al.*, 2006): FIB-4 index = age (years) × AST (IU/L)/Platelet count (×109/L) × (ALT [IU/L])^{1/2}.

Statistical analysis:

The data will be tabulated data analysis will be performed to formulate the results.

References:

- 1- Castera L. (2009). Transient elastography and other noninvasive tests to assess hepatic fibrosis in patients with viral hepatitis. J Viral Hepat. 16(5):300–14
- 2- Ceylan B, Fincanci M, Yardimci C, et al. (2013): Can mean platelet volume determine the severity of liver fibrosis or inflammation in patients with chronic hepatitis B? Eur J Gastroenterol Hepatol. 25(5):606-12
- 3- Chu SG, Becker RC, Berger PB, et al. (2010): Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost. 8(1):148-56.
- 4- Lai M, Afdhal NH. Editorial (2011): staging liver fibrosis in hepatitis C: a challenge for this decade. Am J Gastroenterol. 106(12):2121–2.
- 5- Mayda-Domac F, Misirli H, Yilmaz M. (2010). Prognostic role of mean platelet volume and platelet count in ischemic and hemorrhagic stroke. J Stroke Cerebrovasc Dis; 19:66—72.
- 6- Omran MM, Farid K, Emran TM, et al. (2011). Fibro-alpha score as a simple and useful non-invasive test for predicting significant liver fibrosis

- in chronic hepatitis C patients. Arab J Gastroenterol. 12(2):74–9.
- 7- Purnak T, Olmez S, Torun S, et al. (2013): Mean platelet volume is increased in chronic hepatitis C patients with advanced fibrosis; 37(1):41-6
- 8- Strader DB, Wright T, Thomas DL, et al. (2004). Diagnosis, management, and treatment of hepatitis C. Hepatology. 39 (4): 1147–71.
- 9- Schuppan D and Afdhal NH (2008). Liver cirrhosis. Lancet. 371 (9615): 838–51.
- 10- Sterling RK, Lissen E, Clumeck N, et al. (2006): Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology; 43:1317-25.
- 11- Wai CT, Greenson JK, Fontana RJ, et al. (2003): A simple non invasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology; 38:518—26.
- 12- Yuksel O, Helvaci K, Basar O, et al. (2009). An overlooked indicator of disease activity in ulcerative colitis: mean platelet volume. Platelets; 20: 277-281.

LIST OF CONTENTS

Chapter	Page
ACKNOWLEDGMENT	
PROTOCOL	
LIST OF CONTENTS	i
LIST OF TABLES	iii
LIST OF FIGURES	v
LIST OF ABBREVIATIONS	vi
INTRODUCTION	
REVIEW OF LITERATURE	8
Chapter 1: LIVER FIBROSIS	8
Etiology	
Cell types involved in the pathogenesis of fibrosi	s14
Molecular pathogenesis of liver fibrosis	21
Sequale of liver fibrosis	
Prognosis of liver cirrhosis	39
Chapter 2: DIAGNOSIS OF LIVER FIBROSIS	42
Liver biopsy	42
Surrogate markers of liver biopsy	48
Transient elastography	55

Chapter 3: THERPEUTIC APPROACHES TO	THE
TREATMENT OF LIVER FIBROSIS	64
PATIENTS AND METHODS	76
RESULTS	83
DISCUSSION	104
SUMMARY	117
CONCLUSION AND RECOMMEDATIONS	120
REFERENCES	121
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1 Review	Child-Pugh score	28
2 Review	METAVIR and Ishak staging systems for liver fibrosis	47
3 Review	Cons and Pros of liver biopsy in staging liver fibrosis	48
4 Review	Summary of cut-off values and diagnostic performance of direct and indirect surrogate markers of liver fibrosis modified according to (Pinzani et al., 2008)	52
1 Results	Comparison between the two groups according to demographic data and descriptive data	81
2 Results	Comparison between the two groups according to lab results	83
3 Results	Comparison between the 2 groups regarding the studied noninvasive fibrosis markers.	84
4 Results	Relation between different fibrosis stages and MPV	86
5 Results	Relation between different fibrosis stages and PDW	88
6 Results	Relation between different fibrosis stages and APRI	90
7 Results	Relation between different fibrosis stages and FIB 4	92
8 Results	Diagnostic performance for the best cut off for the studied parameters to differentiate between F0F1 vs F2F3F4	94
9 Results	Diagnostic performance for the best cut off of the studied parameters to differentiate between F0F1F2 vs F3F4	96

Table		Page
10 Results	Diagnostic performance for the best cut off of the studied parameters to differentiate between F0F1F2F3 vs F4	99
11 Results	Logestic regression multivariate analysis investigating independent variables associated with fibrosis score severity	99
12 Results	Multivariate analysis investigating the studied noninvasive indices for predicting liver fibrosis score ≥ 2	100

LIST OF FIGURES

Figure		Page
1 Review	Normal structure of hepatic sinusoid showing hepatic cells	14
2 Review	Key concepts involved in the activation of hepatic stellate cells and pathogenesis of hepatic fibrosis	22
1 Results	Distribution of liver fibrosis stages in the studied patients according to METAVIR score	82
2 Results	ROC curve of the studied non invasive fibrosis markers to discriminate between patients with F0F1 vs F2F3F4	95
3 Results	ROC curve of the studied non invasive fibrosis markers to discriminate between patients with F0F1F2 vs F3F4	97
4 Results	ROC curve of the studied non invasive fibrosis markers to discriminate between patients with F0F1F2F3 vs F4	99