Effect of Magnesium Supplementation in Children with Uncontrolled Idiopathic Epilepsy

Chesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Mohamed Ramadan Sayed M.B., B.Ch. (2009)

Under Supervision of

Prof. Sahar M. A. Hassanein

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof. Dr. Neveen Tawakol Younis

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Iman Ali Abd Elhamid

Assistant Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2016

سورة البقرة الآية: ٣٢

First, great thanks to **ALLAH** Who gave me the power to complete this work. Without his care nothing could be achieved.

I would like to express sincere gratitude to **Prof. Sahar M. A. Hassanein,** Professor of Pediatrics, Faculty of Medicine,
Ain Shams University for her wise guidance, kind encouragement
and instructive supervision; I have the honor to complete this
work under her supervision.

I am deeply thankful to **Prof. Neveen Tawakol Younis,** Professor of Pediatrics, Faculty of Medicine, Ain
Shams University, for his valuable supervision, guidance,
understanding and kind advice throughout this work.

Also I would like to express sincere gratitude to **Dr. Iman Ali Abd Elhamid,** Assistant Professor of Pediatrics, Faculty of
Medicine, Ain Shams University, every word and every step in
this work has been kindly arranged by her effort, care and
continuous encouragement.

Last but not least, I would like to thank my patients, who were the corner stone of this study.

Finally my truthful affection and love to My Family, who were and will always be, by my side all my life.

Tist of Contents

Subject	Page No.
List of Abbreviations	I
List of Tables	III
List of Figures	VI
Introduction	1
Aim of the Study	3
Review of Literature	
Chapter (1): Epilepsy	4
Chapter (2): Magnesium	51
Subjects and Methods	61
Results	69
Discussion	92
Summary and Conclusion	104
Recommendations	108
References	109
Appendix	134
Arabic Summary	

List of Abbreviations

Abb.	Mean
5-HT	5hydroxy tryptamine
ACTH	Adrenocorticotropic hormone
ADHD	Attention deficit hyperactivity disorder
AEDs	Anti-epileptic drugs
AMPA	Amino-3 hydroxy-5-Methyl-isoxasole Propionic Acid
BECTS	Benign epilepsy with centrotemporal spikes
BFIS	Benign familial infantile seizures
BFNS	Benign familial neonatal seizures
BNFIS	Benign non familial infantile seizures
CAE	Childhood absence epilepsy
COE-G	Childhood occipital epilepsy of Gastaut
СТ	Computed tomography
EEG	Electroencephalogram
EMA	Epilepsy with myoclonic absences
GABA	Gamma-Aminobutyric acid
GAD	Glutamic acid decarboxylase
GGE	Genetic generalized epilepsy
GGE	Genetic generalized epilepsy
GTCS	Generalized tonic-clonic seizure
H/A	Height/Age
IGE	Idiopathic generalized epilepsy

Abb.	Mean
ILAE	International League Against Epilepsy
IQ	Intelligence quotient
IS	Infantile spasms
JAE	Juvenile absence epilepsy
JME	Juvenile myoclonic epilepsy
MAE	Myoclonic astatic epilepsy
Mg	Magnesium
MgSO4	Magnesium sulfate
MRI	Magnetic resonance imaging
NMDA	N-methyl-D-aspartate
PTZ	Pentylenetetrazol
SPECT	Single-photon emission computed tomography
SW	Spike and wave
TA	Typical absence
VNS	Vagus nerve stimulation
WAIS	Wechsler Abbreviated Intelligence Scale
WISC-R	Wechsler Intelligence Scale for Children- Revised

Tist of Tables

Table No.	Title	Page No.
Table (1):	Studies in patients with new-	
Table (2):	ILAE revised terminology organization of seizures and epile 2011-2013	epsies
Table (3):	Comparison of major changes be the 1989 and 1981 Classification Terminology and the newly pro Terminology and Concepts	n and posed
Table (4):	Suggested scheme for etic classification of epilepsy related to old and new classification	both
Table (5):	An example of a classification of epsyndromes	
Table (6):	Comparison of the three study ground enrollment regarding epidemiological data	ogical
Table (7):	Comparison of the three study ground enrollment regarding anthroport measurements	netric
Table (8):	Comparison of the three study ground enrollment regarding Mg level are level	nd IQ

Tist of Tables (Cont....)

Table No.	Title	Page No.
Table (9):	Comparison between Characteristics of epilepsy Group (1) and Group (2)	between
Table (10):	Anti-epileptic agents used by C and Group (2)	_
Table (11):	Comparison between Group Group (2) regarding seizures fand severity at enrollment	requency
Table (12):	Comparison between Group Group (2) regarding seizures fand severity after treatment	requency
Table (13):	Comparison between Group Group (2) regarding IQ level level at enrollment	and Mg
Table (14):	Comparison between Group Group (2) regarding IQ level level after treatment	and Mg
Table (15):	Comparison between EEG fire Group (1) and Group (2) at enrol	•
Table (16):	Comparison between EEG fin Group (1) and Group (2) after tree	•
Table (17):	Paired comparison of seizure from Chalfont score, IQ, and Mg lever and after treatment in Group (1).	rel before

Tist of Tables (Cont....)

Table No.	Title	Page No.
Table (18):	Paired comparison of seizure frequency Chalfont score, IQ, and Mg level enrollment and at the end of the studies Group (2)	el at dy in
Table (19):	Correlation between serum Mg^{2+} and the IQ in the whole epileptic grow	
Table (20):	Correlation between serum Mg ²⁺ Chalfont score in the Mg ² -supplementation epileptic subgroup	ented
Table (21):	Correlation between the duration epilepsy and number of antiepileptic the IQ and Chalfont score in the v	s and
	epileptic group	91

List of Figures

Figure No.	. Title	Page No
Figure (1):	Ion channels in neuronal membrane	6
Figure (2):	Gultamate release in the presyn terminals.	•
Figure (3):	Excitatory synapse versus Inhib synapse	•
Figure (4):	The ILAE 2016 Operate Classification of Seizure Types: E and Expanded Scheme	Basic
Figure (5):	Outcome of treatment of epilepsy	38
Figure (6):	Algorithm for starting drug treatment patient presenting with a first seizure	
Figure (7):	Absorption of magnesium	52
Figure (8):	Mean magnesium level in the three s groups at enrollment	•
Figure (9):	Mean IQ verbal, IQ performance, an total in the three study groups enrollment	s at
Figure (10):	Antiepileptic usage in Mg-suppleme and non-Mg-supplemented patients	
Figure (11):	Box plot showing the seizure frequency per month before and after treatment group (1) and group (2)	nt in

Tist of Figures (Cont...)

Figure No.	. Title	Page No.
Figure (12):	Box plot showing the Chalfont before and after treatment in group and group (2)	p (1)
Figure (13):	Box plot showing the IQ verbal b and after treatment in group (1) group (2)	and
Figure (14):	Box plot showing the IQ perform before and after treatment in group and group (2)	p (1)
Figure (15):	Box plot showing the IQ total before after treatment in group (1) and group	
Figure (16):	Box plot showing the Mg level b and after treatment in group (1) group (2)	and

Effect of Magnesium Supplementation in Children with Uncontrolled Idiopathic Epilepsy

Abstract

Epilepsy is one of the most prevalent neurological conditions and it knows no age, racial, social class, geographic, or national boundaries. The magnesium has important role in many cellular functions as Over 300 enzyme systems are dependent on the presence of Mg. Aim: Study the effect of Magnesium as add on therapy on clinical seizure control in uncontrolled idiopathic epilepsy, effect of Magnesium therapy on cognition and effect Magnesium on electrographic control. Subjects: This is a clinical trial study which was conducted on 40 children aged less than 15 years. 40 children were suffering from uncontrolled idiopathic epilepsy and following up in pediatric neurology clinic, Ain shams university they were 20 males and 20 females. **Results:** In the current study there were no statistically significant difference between the epileptic patients and control age, sex distribution, group regarding social class and anthropometric **Conclusion:** measurements. Magnesium supplementation as add on therapy in children with uncontrolled idiopathic epilepsy was able to reduce the seizures frequency in those patients. Moreover both serum Mg level and verbal IQ level in epileptic patients were positively correlated, while the serum Mg level found to be negatively correlated to Chalfont score. Recommendations: Regular assessment of cognitive function in children with epilepsy. Magnesium supplementation for children with uncontrolled idiopathic epilepsy with consideration of it's possible side effects and contraindications.

Keywords: Epilepsy, Magnesium, anthropometric, idiopathic.

Introduction

Epilepsy is one of the most prevalent neurological conditions and it knows no age, racial, social class, geographic, or national boundaries (de Boer et al., 2008). The extraordinary burden of epilepsy on quality of life (QOL) is well known, as is the very high economic burden associated with the disease (Cardarelli and Smith, 2010). Epilepsy is strongly associated with social stigma and reduced quality of life for patients and their caregivers and, thus, may have a substantial socio-economic impact (Westphal-Guitti et al., 2007; van Andel et al., 2009).

The magnesium has important role in many cellular functions as Over 300 enzyme systems are dependent on the presence of Mg (*Fawcett et al.*, 1999). The transport of potassium and calcium across membranes is thought to be dependent on Mg; hence Mg is also important for nerve conduction (*Rude*, 1998). In brain, one major action of Mg2+ is modulating the voltage-dependent block of NMDA receptors (NMDAR), (*Mayer et al.*, 1984; *Nowak et al.*, 1984). Studies in animals in the 1920—1960s suggested that low blood Mg concentration is associated with seizures (*Canelas et al.*, 1965).

Low Mg concentration in the perfusate is a common method of generating spontaneous epileptiform discharges from rat hippocampal slices (*Tancredi et al.*, 1988), case

Introduction \(\bigset\)

reports have described seizures due to hypomagnesemia in infants and adults (*Fagan and Phelan*, 2001; *Weislederet al.*, 2002). In a study, serum ionized Mg was significantly lower in 49 people with epilepsy than in 32 racially matched controls (*Sinert et al.*, 2007).

In another study Mg supplementation was able to significantly decrease the amount of seizure days/month, with two patients reportedly becoming seizure-free (*Abdelmalik et al.*, 2012). Also Magnesium sulfate was safely administered in 2 patients with febrile illness-related epilepsy syndrome, with seizure cessation in one (*Tan et al.*, 2015).

Gastrointestinal adverse effects of magnesium sulfate include nausea, vomiting, and diarrhea. Overdose of magnesium can cause thirst, hypotension, drowsiness, muscle weakness, respiratory depression, cardiac arrhythmia, coma and death. Because magnesium is cleared renally, patients with renal insufficiency may be at increased risk of heart block or hypomagnesaemia (Martindale and Parfitt, 1999).

Concomitant use of magnesium and urinary excretion-reducing drugs may increase serum magnesium levels (Shils and Olson, 1994). Concomitant oral intake of magnesium may influence the absorption of skeletal muscle relaxants (McKevoy, 1998).

Aim of the Study \sigma

Aim of the Study

The Aim of this work was to:

- Study the effect of Magnesium as add on therapy on clinical seizure control in uncontrolled idiopathic epilepsy.
- Effect of Magensium therapy on cognition.
- Effect Magensium on electrographic control.