Serum Dickkopf-1 in Early Detection of Hepatocellular Carcinoma in Egyptian Cirrhotic Patients

Thesis

Submitted for Partial Fulfillment of M.D Degree in Internal Medicine

By

Abeer Abd El-Raof Abd El-Hady

(M.B B.Ch., M.SC.)
Master of internal Medicine- Ain Shams University

Under Supervision of

Prof. Yehia Mohamed El-shazly

Professor of Internal Medicine Faculty of Medicine-Ain Shams University

Prof. Wafaa Kamal El-Din Mohamed

Professor of Internal Medicine Faculty of Medicine-Ain Shams University

Prof. Mohamed Abdelmoghny Mustafa

Professor of Internal Medicine Faculty of Medicine-Ain Shams University

Dr. Nevine Ibrahim Musa

Assistant Professor of Internal Medicine Faculty of Medicine-Ain Shams University

Dr. Dalia Hosney Abdelhamed

Lecturer of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Serum Dickkopf-1 in Early Detection of Hepatocellular Carcinoma in Egyptian Cirrhotic Patients

Abstract

Background: Dickkopf-1 is a secreted protein involved in embryonic development. Previous studies have shown that DKK1 is overexpressed in HCC tissue but is not detectable in corresponding non-cancerous liver tissue. **Objective:** Study assess the value of serum DKK1 in early detection of HCC in Egyptian Cirrhotic Patients. **Study design:** A comparative cross sectional study was conducted on 170 patients divided into 2 groups HCC group consisted of 90 patients and control group consisted of 80 patients (40 patients with liver cirrhosis and 40 healthy persons) conducted at Internal Medicine department and Hepatology outpatient clinic in Ain Shams University Hospitals.

Results: serum DKK1was significantly higher in HCC group than in control group so, serum DKK1 may serve as a good diagnostic biomarker for the diagnosis of HCC.

Conclusion: The current study showed that the serum DKK1 may serve as a good diagnostic biomarker for the diagnosis of HCC at cut off point ≥ 5 ng/ml. Serum DKK1 is superior to AFP in the diagnosis of HCC. Adding both AFP and DKK did not yield better diagnostic characteristics.

Recommendations: Screening and follow up of cirrhotic patients using serum DKK1 is recommended due to its higher sensitivity and specificity in HCC detection.

Further study is required to establish an optimal DKK-1 cutoff value and its use as a prognostic marker for HCC.

Department of internal Medicine, Hepatology and Gastroentrology, Ain Shams University. Abeer Abd El-raof Abd El-hady Hafez. abeer_raof@med.asu.edu.eg 01110852891.

Key words: Dickkopf-1, hepatocellular carcinoma, tumor marker.

سورة البقرة الآية: ٣٢

First of all, thanks to **Allah** whose magnificent help was the main factor in completing this work.

Words cannot express my deepest gratitude to **PROF. YEHIA MOHAMMED EL-SHAZLY**, Professor of Internal Medicine, Ain
Shams University, who helped me throughout this work by training,
precious instructions, valuable advices and scientific knowledge to
accomplish such work.

It has been a great honor for me to work under her generous supervision Great words really needed to express my gratitude, sincere appreciation and respect to **PROF. WAFAA KAMAL EL-DIN MOHAMMED**, Professor of Internal Medicine, Ain Shams University, for her great help, continuous support, and sincere advice during this work.

I would also like to thank PROF. MOHAMED ABDELMOGHNY MUSTAFA, Professor of Internal Medicine, Ain Shams University for his continuous encouragement, guidance and support.

I would also like to thank **DR. NEVINE IBRAHIM MUSA**, Assistant Professor of Internal Medicine, Faculty of Medicine, Ain Shams University for her continuous guidance and support she gave me throughout the whole work.

I would also like to thank DR. DALIA HOSNEY ABDELHAMED, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her help and valuable advice.

Dedication

I would like to extend my deepest thanks to people who inspired me and supported me through out my entire life,

My Mother & Father

My busband,

My Sisters,

And My Son

To Everyone of You, My Life is Dedicated.

Contents

Subjects	Paģe
List of abbreviations	II
List of Figures	VI
List of Tables	VIII
• Introduction	1
Aim of the Study	4
• Review of Literature	
♦ Chapter (1): Hepatocellular Carcinoma	5
♦ Chapter (2): Tumor Markers	82
◆ Chapter (3): Serum DKK1	100
Patients and Methods	111
• Results	118
• Discussion	142
• Summary	153
• Conclusion	154
• Recommendation	155
• References	156
Arabic Summary	

Meaning Abbrev. : Alpha-1 Anti-trypsin A1AT **AASLD** : American Association for the Study of Liver Diseases AFB1 : Aflatoxin B1 **AFP** : Alpha-fetoprotein AFP-L3 : Lens culinaris agglutinin-reactive AFP **AFU** : Alpha-l-fucosidase AIH : Autoimmune hepatitis **AST** : Aspartate aminotransferase **BCLC** : Barcelona-Clinic Liver Cancer **BMI** : Body mass index CEUS : Contrast enhanced ultrasound CLD : Chronic liver disease **CLIP** : Cancer of the Liver Italian Program **CT** : Computed Tomography CTL4 : Cytotoxic T-lymphocyte-associated protein 4 **CTP** : Child-Turcott-Pugh CXCL5 : Epithelial neutrophil-activating peptide **DCP** : Des-gamma carboxyprothrombin : Drug eluding beads **DEBs**

DKK1 : Dickkopf related protein 1

ECLIA : electro chemo-luminescence

EPO : Erythropoietin

ERs : Estrogen receptors

FFA: Free fatty acids

FLT3 : FMS-like tyrosine kinase-3 receptor

FNA : Fine needle aspiration

Fz : Frizzled receptor

GP73 : Golgi protein 73

GPC3 : Glypican-3

Gsk3 : Glycogen Synthase Kinase 3

GSTM1 : Gluthatione S-Transferase M1

HBV : Hepatitis B virus

HBx : (HBV) x protein

HCC: Hepatocellular carcinoma

HCV : Hepatitis C virus

HGF : Hepatocyte growth factor

IGF : Insulin like growth factor

KIT : Stem-cell factor receptor

LCA : Lens culinaris agglutinin

LDLT : Living-donor liver transplantation

LRP : Low-density lipoprotein receptor-related protein

MELD : Model for End-Stage Liver Disease

MOH : Ministry of Health

MRI : Magnetic Resonance Imaging

MWA : Microwave ablation

NA : Nucleos(t)ide analogs

NAFLD : Non-alcoholic Fatty Liver Disease

NASH : Nonalcoholic steatohepatitis

OCs : Contraceptives

OCT4 : Octamer-binding transcription factor 4

OLT : Orthotopic liver transplantation

OS : Overall survival

PBC: Primary biliary cirrhosis

PD: Programmed death

PDGFR-β : Platelet-derived growth factor receptor beta

PEI : Percutaneous ethanol injection

PIVKA-II : Protein induced by vitamin K absence

PST : Performance Status

RET : Glial cell line-derived neurotrophic factor receptor

RFA : Radiofrequency ablation

SBRT : Stereotactic body radiation therapy

SCCA : Squamous cell carcinoma antigen

SELDI-TOF MS: Surface-enhanced laser

desorption/ionization time of flight mass

spectrometry

SSTR : Specific somatostatin receptors

STAT3 : Signal transducer and activator of

transcription 3

TACE: Transcatheter Arterial Chemoembolization

TGF β 1 : Transforming growth factor beta 1

TNF : Tumor necrosis factor

TNM: Tumor, Node, Metastasis staging

TPO: Thrombopoietin.

UCSF : University of San Francisco

UNOS : Network for Organ Sharing

US : Ultrasound

USA : United States of America

VEGF : Vasoendothelial growth factor

WHO : World Health Organization

WNT : Wingless-related integration site

List of Figures

No.	<u>Figure</u>	Page
<u>1</u>	Regional variations in the rates of HCC.	7
2	Proposed pathogenetic mechanisms of HCC in NASH.	20
<u>3</u>	Growth patterns of progressed hepatocellular carcinoma.	32
<u>4</u>	Contrast enhanced ultrasound (CEUS)	41
<u>5</u>	abdominal CT multiphase perfusion CT.	43
6	Magnetic Resonance Imaging (MRI)	47
7	Updated BCLC Staging system and Treatment Strategy.	53
<u>8</u>	Different agents that target the VEGF pathway and their molecular mechanism of action.	79
9	Schematic of the canonical vertebrate Wnt signaling pathway.	104
<u>10</u>	WNT/β-catenin pathway activation in hepatocellular carcinoma.	110
<u>11</u>	Number of focal lesions among group-A.	121
<u>12</u>	DKK1 among the studied cases.	126
<u>13</u>	AFP among the studied cases.	127
14	Correlation between DKK1 and lesion size in HCC group.	130
<u>15</u>	Comparison between lesion numbers regarding AFP among HCC group.	134
<u>16</u>	Comparison between lesion numbers regarding DKK1 among HCC group.	135

List of Figures

No.	<u>Figure</u>	Page
<u>17</u>	ROC curve shows Diagnostic performance of AFP and DKK1 as diagnostic markers for HCC.	137

List of Tables

<u>No.</u>	<u>Table</u>	Page
1	Risk factors associated with HCC.	30
<u>2</u>	CLIP Staging & Classification.	51
<u>3</u>	Treatment of HCC.	81
<u>4</u>	Serum Alpha-Fetoprotein (AFP) determination in Liver Disease.	85
<u>5</u>	Dkk expression in tumors.	106
<u>6</u>	Child-Turcotte-Pugh Classification for severity of cirrhosis.	114
<u>7</u>	Demographic characteristics of the studied cases.	118
<u>8</u>	Clinical characteristics of the studied cases.	119
<u>9</u>	Focal lesions characteristics among HCC group using triphasic CT scan.	120
<u>10</u>	Liver function tests among the studied cases.	122
<u>11</u>	CBC and Renal function of the studied cases.	124
<u>12</u>	AFP and DKK1 among the studied cases	125
<u>13</u>	Correlation between AFP and DKK1 and other variables in group-A.	128
<u>14</u>	Comparison between child grades regarding AFP and DKK among the studied cases.	129
<u>15</u>	Correlation between AFP and DKK1 and other variables in group-B.	131
<u>16</u>	Correlation between AFP and DKK1 and other variables in group-C.	132
<u>17</u>	Comparison between lesion numbers regarding	133

List of Figures

No.	<u>Table</u>	<u>Page</u>
	AFP and DKK1 among group-A.	
<u>18</u>	Diagnostic performance of AFP and DKK1 as diagnostic markers for HCC.	136
<u>19</u>	Diagnostic characteristics of AFP ≥ 200 ng/ml.	138
<u>20</u>	Diagnostic characteristics of DKK1 \geq 5.0 ng/ml.	139
<u>21</u>	Diagnostic characteristics of combined DKK1 ≥ 5.0 ng/ml & AFP ≥ 200.0 ng/ml.	140
22	Agreement between DKK1 \geq 5.0 ng/ml and AFP \geq 200.0 ng/ml among group-A	141

Introduction

Hepatocellular carcinoma (HCC) is a major health problem, being the sixth most common malignant disease and the third leading cause of cancer-related death worldwide. Its incidence continues to increase all over the world (*Venook et al.*, 2010).

Hospital-based studies from Egypt have reported an overall increase in the relative frequency of all liver related cancers in Egypt (>95% as HCC), from approximately 4% in 1993 to 7.3% in 2003 (*El-Zayadi et al.*, 2005).

Surveillance of patients at highest risk for developing HCC (i.e., patients with cirrhosis) is an important strategy that can potentially decrease the HCC related mortality rate (*Sangiovanni et al.*, 2004).

Alpha-fetoprotein (AFP) is a serum marker that is most widely used for diagnosis as well as surveillance of HCC. However, AFP levels may be normal in up to 40% of patients with HCC, particularly during the early stages of HCC. Furthermore, elevated AFP levels may be seen in patients with cirrhosis or exacerbations of chronic hepatitis. Prospective studies evaluating the performance characteristics of AFP for HCC surveillance reported