

DEVELOPMENT OF AN ADVANCED TRAVELER INFORMATION SYSTEM USING CROWDSOURCED DATA WITH APPLICATION ON SAMPLE CORRIDORS IN CAIRO

By Khadiga Hosny Riad Eladly

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering – Public Works

DEVELOPMENT OF AN ADVANCED TRAVELER INFORMATION SYSTEM USING CROWDSOURCED DATA WITH APPLICATION ON SAMPLE CORRIDORS IN CAIRO

By Khadiga Hosny Riad eladly

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Civil Engineering – Public Works

Under the Supervision of

Prof. Dr. Azza Moustafa Saied

Dr. Ahmed Elsayed Hasssan

Professor of Transport and Traffic Engineering and Planning Civil Engineering -Public Works Faculty of Engineering, Cairo University Assistant Professor of Transport and Traffic Engineering and Planning Civil Engineering -Public Works Faculty of Engineering, Cairo University

DEVELOPMENT OF AN ADVANCED TRAVELER INFORMATION SYSTEM USING CROWDSOURCED DATA WITH APPLICATION ON SAMPLE CORRIDORS IN CAIRO

By

Khadiga Hosny Riad Eladly

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in Civil Engineering – Public Works

Approved by the	
Examining Committee	
Prof. Dr. Azza Moustafa Saied,	Thesis Main Advisor
Professor of Transport and Traffic Engineering a	
Prof. Dr. Ahmed Elbadawy Taha,	Internal Examiner
Professor of Transport and Traffic Engineering a	
Prof. Dr. Mohamed Maher Shahin,	External Examiner
Professor of Transport Planning and Traffic Engi	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer's Name:** Khadiga Hosny Riad Eladly

Date of Birth:3/2/1988Nationality:Egyptian

E-mail: Eng.khadiga@hotmail.com

Phone: 01279491460

Address: 58 Elnabawy Ehlmohandes street

Registration Date: 1/10/2013 **Awarding Date:** / /2017 **Degree:** Master of Science

Department: Civil Engineering – Public Works

Supervisors:

Prof. Dr. Azza Moustafa Saied Dr. Ahmed Elsayed Hassan

Examiners:

Prof. Dr. Mohamed Maher Shahin (External examiner)

 Professor of Transport Planning and Traffic Engineering, Alexandria University.

Prof. Dr. Ahmed Elbadawy Taha (Internal examiner)

Porf. Dr. Azza Moustafa Saied (Thesis main advisor)

Title of Thesis:

Development of an Advanced Traveler Information System Using Crowdsourced Data with Application on Sample Corridors in Cairo

Key Words:

ITS; Time prediction; Time dependent shortest path; Travel time; Incident

Summary:

Traffic management is believed as an essential solution for controlling traffic congestion due to the limitation in the road network capacity as a result of resources shortage. The thesis proposed using GPS integrated in the smart phone for managing the traffic efficiently which is considered as one of the wide spreaded crowdsourced data and from the cheapest ITS technologies. The traffic congestion decreasing is achieved through providing register users periodically with the time dependent shortest path taking into consideration different demand pattern and incident occurrence.

Acknowledgments

Thanks to Allah for providing me with the opportunity, the strength and the patience to complete the thesis and overcoming different challenges and difficulties.

First and foremost I would like to express my deep gratitude to my advisors: Prof. Dr. Azza Mostafa Saied and Dr. Ahmed Elsayed Hasssan for their patience, motivation, enthusiasm, and immense knowledge. It has been an honor and a pleasure to work with them.

I am indebted to Dr. Azza for her guidance, support and advice. I am indebted to Dr. Ahmed for spending countless hours with me on discussing problems and suggesting solutions. Besides, priceless and valuable skills that he taught me during the master. Also I would like to thank the professors who provide me with fruitful and valuable knowledge in the transportation field.

Finally, I would like to express my deepest thanks to my parents who were my backbone throughout my entire life. I would like to thank Eng.Mona Kotb for supporting and encouraging me to start my master degree and Miss Azza Ghanem for providing me with the time and atmosphere to finish my Pre-Master graduate diploma. I would like to thank my colleges especially Dr.Ayman Ghazy, Ibrahim Zoghla and my friends for motivating and guiding me.

Dedication

I dedicate this thesis to my lovely parents, Hosny Eladly and Amany Said, who have been my role model in hard working and without their support and encouragement I wouldn't be able to achieve my ambitions.

Table of Contents

ACKNOV	WLEDGMENTS	I
DEDICA	ΓΙΟΝ	II
TABLE (OF CONTENTS	III
	TABLES	
	FIGURES	
	SYMBOLS	
LIST OF	ABBREVIATIONS	XIII
ABSTRA	CT	XIV
СНАРТЕ	R 1 INTRODUCTION AND RESEARCH OBJECTIVES	1
1.1.	BACKGROUND	1
1.2.	RESEARCH OBJECTIVES	1
1.3.	ORGANIZATION OF THE THESIS	2
СНАРТЕ	R 2 LITERATURE REVIEW	3
2.1.	Introduction	3
2.2.	DIFFERENT TRAVEL TIME DATA COLLECTION TECHNOLOGIES	
2.2.1.		
2.2.2.	•	
2.2.3.	Bluetooth	7
2.3.	LINK TRAVEL TIME FOR THE ROAD NETWORK	7
2.4.	TRAVEL TIME PREDICTION METHODS	8
2.4.1.	Time series model	8
2.4.2.	Data driven method	9
2.5.	SHORTEST PATH ALGORITHMS	10
2.6.	INCIDENT DETECTION	10
2.7.	SIMULATOR	12
2.8.	SUMMARY	12
СНАРТЕ	R 3 RESEARCH METHODOLOGY ON BUILDING UP SIMULAT	OR
FOR TRA	AFFIC MANAGEMENT IN CAIRO	13
3.1.	Introduction	13
3.2.	METHODOLOGY	13
3.3.	DATA PREPARATION STAGE	13
3.4.	ROUTE NAVIGATION ASSISTANCE STAGE	15
3.5.	ALGORITHM PERFORMANCE STAGE	
3.6.	SIMULATION OUTPUT	16
3.7.	ALGORITHM PERFORMANCE EVALUATION	16
3.8.	PLANNED EXPERIMENTS FOR MEASURING ALGORITHMS PERFORMANCE	16
3.9.	PERFORMANCE MEASURING TOOLS	17

3.10.	EXPERIMENTS FRAMEWORK	17
3.11.	SUMMARY	18
СНАРТЕ	R 4 DATA PREPARATION FOR ROAD NETWORK SYSTEM	20
4.1.	Introduction	20
4.2.	ROAD NETWORK PREPARATION	20
4.3.	ROAD DATABASE PREPARATION	
4.3.1.		
4.3.2.	• •	
4.4.	HISTORICAL DATABASE PREPARATION	28
4.5.	SUMMARY	29
СНАРТЕ	R 5 ROUTE NAVIGATION ASSISTANCE SYSTEM ALGORITHI	M.30
5.1.	Introduction	30
5.2.	ROUTE NAVIGATION ASSISTANCE SYSTEM OVERVIEW	
5.3.	MAP-MATCHING	
5.4.	TIME DEPENDENT SHORTEST PATH	
5.5.	DATABASE UPDATE	
5.6.	INCIDENT DETECTION	
5.7.	ALGORITHM FOR INCIDENT DETECTION, REMOVAL AND CLEARNESS	
5.8.	SUMMARY	
	R 6 ALGORITHM PERFORMANCE EXPERIMENTS	
6.1.	Introduction	
6.2.	DATABASE UPDATING PHASE EXPERIMENT	
6.2.1.		
6.2.2.		
6.2.3.	• • •	
6.3.	DIFFERENT USERS' PERCENTAGES EXPERIMENT – EXP.2	
6.3.1.	Road Network Performance Measure - Exp.2	54
6.3.2.	Users Travel Time Estimation Accuracy - Exp.2	
6.3.3.	Links Travel Time Estimation Accuracy - Exp.2	
6.4.	DIFFERENT DEMAND LEVELS EXPERIMENT – EXP.3	63
6.4.1.	Road Network performance measure - Exp.3	63
6.4.2.	Users Travel Time Estimation Accuracy - Exp.3	64
6.4.3.	Links Travel Time Estimation Accuracy - Exp.3	69
6.5.	DIFFERENT SHORTEST PATH REQUEST INTERVALS EXPERIMENT - EXP.4	72
6.5.1.	Road Network Performance Measure - Exp.4	
6.5.2.	Users Travel Time Estimation Accuracy - Exp.4	
6.5.3.	Links Travel Time Estimation Accuracy - Exp.4	
6.6.	INCIDENT SCENARIO EXPERIMENT – EXP.5	
6.6.1.	Different users' percentages during incident scenario	
6.6.2.	Different demand levels during incident scenario	
6.7.	SUMMARY	86
CHAPTE	R 7 SUMMARY AND CONCLUSIONS	88

	NCES	
	RECOMMENDATIONS FOR FUTURE WORK	
7.2.	Conclusions	88
7.1.	SUMMARY	.88

List of Tables

Table 4.1: Free flow Speed and capacity25
Table 6.1: Percentage number of travelers for average percentage travel time error
range considering database updating phase48
Table 6.2: Percentage number of travelers for average percentage travel time error
range difference of successive runs considering database updating phase50
Table 6.3: Percentage number of links updated during each run51
Table 6.4: Average percentage travel time error between updated database and
simulation for database updating phase52
Table 6.5: Average percentage travel time error between two successive databases for
database updating phase53
Table 6.6: Percentage number of updated links with respect to initial database for
database updating phase53
Table 6.7: Average travel time for different percentage shortest path request54
Table 6.8: Average percentage travel time error for different users' percentages55
Table 6.9: Percentage number of travelers that changed their path for different users'
percentages57
Table 6.10: Average percentage number of travelers for average percentage travel time
error range considering different users' percentages
Table 6.11 Average percentage number of travelers for average percentage travel time
error range difference of successive runs considering different users' percentages59
Table 6.12: Average percentage travel time error between updated database and
simulation for different users' percentages61
Table 6.13: Average percentage travel time error between two successive databases for
different users' percentages61
Table 6.14: Percentage number of updated links with respect to initial database for
different users' percentages
Table 6.15: Average travel time for different demand63
Table 6.16: Average percentage travel time error for different demand64
Table 6.17: Percentage number of travelers that changed their path for different demand
Table 6.18: Average percentage number of travelers for average percentage travel time
error range considering different demand67
Table 6.19: Average percentage number of travelers for average percentage travel time
error range difference of successive runs considering different demand68
Table 6.20: Average percentage travel time error between updated database and
simulation for different demand70
Table 6.21: Average percentage travel time error between two successive databases for
different demand71
Table 6.22: Percentage number of updated links with respect to initial database for
different demand71
Table 6.23: Average travel time for different shortest path request intervals73

List of Figures

Figure 2.1: Position using Global Positioning Triangulation	4
Figure 2.2: Google Traffic	4
Figure 2.3: Cell Phone Handover	5
Figure 2.4: TOA Location Method	5
Figure 2.5: AOA Location Method	6
Figure 2.6: AirSage system	6
Figure 2.7: INRIX community reporter	11
Figure 3.1: Thesis Methodology	13
Figure 3.2: Study area	14
Figure 3.3: Trip information	14
Figure 3.4: Simulation interface	15
Figure 3.5: Route Navigation Assistance Experiments framework	19
Figure 3.6: Embedded Incident Scenario Experiment Framework	19
Figure 4.1: study area on open street map	21
Figure 4.2: study area in ArcGIS	21
Figure 4.3: Selected road classification in ArcGIS	22
Figure 4.4: study area shapefile on Google Earth	22
Figure 4.5: Measuring width of lane	23
Figure 4.6: Missing road name in ArcGIS	23
Figure 4.7: Missing road name on Google Earth	24
Figure 4.8: core area in green color	25
Figure 4.9: Link database sample	26
Figure 4.10: Node location on ArcGIS	26
Figure 4.11: Node database sample	27
Figure 4.12: Zone location	27
Figure 4.13: Zone database sample	27
Figure 4.14: Historical Database Sample	28
Figure 5.1: System Structure	
Figure 5.2: Route navigation assistance system	31
Figure 5.3: Activation of the request and collecting data of users	32
Figure 5.4: Storing, Updating Data of Users and Travel Time Estimation	33
Figure 5.5: Updating scenario based travel time database	34
Figure 5.6: Step 1 in Map-Matching	36
Figure 5.7: Step 2 in Map-Matching	36
Figure 5.8: A Network Sample for Explaining Time Dependent Shortest Path	38
Figure 5.9: Newton-Raphson Method Explanation	40
Figure 5.10: Relation between flow and incident phases	40
Figure 5.11: Kpercentage value	
Figure 5.12: Incident Explanation	43
Figure 5.13 Incident detection Algorithm	
Figure 6.1: Average travel time for database updating phase	46
Figure 6.2: Average percentage travel time error for database updating phase	47

Figure 6.3: percentage number of travelers that changed their path for database
updating phase47
Figure 6.4: Percentage number of travelers for average percentage travel time error
range considering database updating phase49
Figure 6.5: Percentage number of travelers for average percentage travel time error
range difference of successive runs considering database updating phase49
Figure 6.6: Percentage number of links updated during each run51
Figure 6.7: Average percentage travel time error between updated database and
simulation for database updating phase52
Figure 6.8: Average percentage travel time error between two successive databases for
database updating phase53
Figure 6.9: Percentage number of updated links with respect to initial database for
database updating phase54
Figure 6.10: Average travel time for different percentage shortest path request55
Figure 6.11: Average percentage travel time error for different users' percentages56
Figure 6.12: Average of average percentage travel time error for different users'
percentages56
Figure 6.13: percentage number of travelers that changed their path for different users'
percentages57
Figure 6.14: Average percentage number of travelers for average percentage travel time
error range considering different users' percentages58
Figure 6.15: Average percentage number of travelers for average percentage travel time
error range difference of successive runs considering different users' percentages60
Figure 6.16: Average percentage number of updated links for different users'
percentage61
Figure 6.17: Average percentage travel time error of updated links respect to simulation
for different percentage shortest path request62
Figure 6.18: Average percentage travel time error between two successive databases for
different users' percentages62
Figure 6.19: Percentage number of updated links with respect to initial database for
different users' percentages63
Figure 6.20: Average travel time different demand64
Figure 6.21: Average percentage travel time error for different demand65
Figure 6.22: Average of average percentage travel time error for different demand65
Figure 6.23: percentage number of travelers that changed their path for different
demand66
Figure 6.24: Average percentage number of travelers for average percentage travel time
error range considering different demand67
Figure 6.25: Average percentage number of travelers for average percentage travel time
error range difference of successive runs considering different demand69
Figure 6.26: Average percentage number of updated links for different demand70
Figure 6.27: Average percentage travel time error between updated database and
simulation for different demand70

Figure 6.28: Average percentage travel time error between two successive databases for
different demand71
Figure 6.29: Percentage number of updated links with respect to initial database for
different demand72
Figure 6.30: Average travel time for different shortest path request intervals73
Figure 6.31: Average percentage travel time error for different shortest path request
intervals74
Figure 6.32: Average of average percentage travel time error for different shortest path
request interval75
Figure 6.33: percentage number of travelers that changed their path for different
shortest path request intervals75
Figure 6.34: Average percentage number of travelers for average percentage travel time
error range considering different shortest path request intervals76
Figure 6.35: Average percentage number of travelers for average percentage travel time
error range difference of successive runs considering different shortest path request
intervals78
Figure 6.36: Average percentage number of links updated for different shortest path
request intervals79
Figure 6.37: Average percentage travel time error between updated database and
simulation for different shortest path request intervals79
Figure 6.38: Average percentage travel time error between two successive databases for
different shortest path request intervals80
Figure 6.39: Percentage number of updated links with respect to initial database for
different shortest path request intervals81
Figure 6.40: Average travel time for different percentage shortest path request shortest
path at incident83
Figure 6.41: Average travel time for different percentage shortest path request for
presence of incident and absence of incident83
Figure 6.42: Percentage number of users that changed their path between with84
Figure 6.43: The minimum average percentage change in the speed for 3% shortest path
request84
Figure 6.44: The minimum average percentage change in the speed for 10% shortest
path request85
Figure 6.45: The minimum average percentage change in the speed for 15% shortest
path request85
Figure 6.46: average travel time for different demand before and after incident86

List of symbols

Symbol Description

POC The percentage of change

 $\begin{array}{ccc}
NV & \text{New value} \\
OV & \text{Original value} \\
T_u & \text{Updated time}
\end{array}$

 T_a The actual time user spent on the link

 T_d Stored time in the database

t Time stamp v Speed SN Start node EN End node

D Perpendicular distance.

P Vehicle position received from GPS receiver

h GPS longitude k GPS latitude

x Perpendicular projection of point h
y Perpendicular projection of point k
b Value that looking for its square

 $\begin{array}{ccc} S & & Source \ node \\ t_s & & Starting \ time \\ k & & Vertices \end{array}$

 Y_k Temporal label of vertices X_k Permanent labels of vertices

pred(k) Predecessor for permanent labeled vertices k

 $w_{ii}(t)$ Time spent on a link

f'(x) Derivative of function of f(x) x_n Proposed result for the root of f(x)

 $V_{IL\text{-}C.Averg}$ Current average velocity of investigated link $V_{IL\text{-}C.Database}$ Stored current average velocity in database $V_{IL\text{-}GPS}$ Speed detected from GPS on investigated link

 D_{IL} Distance of investigated link

T_{IL-C.Database} Stored current average time in database of investigated

link

 $V_{\text{IL-Thre}}$ Current average velocity of investigated link

 $C_{II-Thre}$ A coefficient which will be equal 20 if there is no incident

occurred in network, while it will be equal 50 if there is

incident already exist.

 V_n Normal average speed which is the normal speed of the

link from historical database without new updates.

 $K_{percentage}$ A certain percentage value of normal speed

Link with the least speed