Neurophysiological Study in Overactive Bladder

Thesis

Submitted in Partial Fulfillment of MD Degree in Physical Medicine, Rheumatology and Rehabilitation

By

Rowaida Hamdy Ali

M.B.,B.Ch.,
Master degree in Physical Medicine, Rheumatology
and Rehabilitation
Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Dr. Naglaa Ali Gadallah

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine - Ain Shams University

Prof. Dr. Mohamed Ali Elwy

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine - Ain Shams University

Assist. Prof Dr. Abeer Kadry Elzohiery

Assistant Professor in Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine - Ain Shams University

Prof. Dr. Ihab Fouad Serag Eldeen Allam

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2016

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful.

My most sincere gratitude is also extended to **Prof. Dr.**Naglaa Ali Gadallah, Professor of Physical Medicine,
Rheumatology and Rehabilitation, Faculty of Medicine - Ain
Shams University, for her enthusiastic help, continuous
supervision, guidance and support throughout this work. I really
have the honor to complete this work under her supervision.

Words fail to express my appreciation to **Prof. Dr. Mohamed Ali Elwy,** Professor of Physical Medicine,
Rheumatology and Rehabilitation, Faculty of Medicine - Ain
Shams University, for his great help, valuable suggestions and
directions throughout the whole work.

I would like also to thank with all gratitude **Assist. Prof Dr. Abeer Kadry Elzohiery**, Assistant professor in Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine - Ain Shams University, for the efforts and time she has devoted to accomplish this work.

A great appreciation is extended also to **Prof. Dr. Ihab Fouad Serag Eldeen Allam,** Professor of Obstetrics and Gynecology, Faculty of Medicine - Ain Shams University, for his keen supervision, meticulous reading and valuable support.

Last but not least, I can't forget to thank all members of my Family, especially my parents, my Husband and my kid for pushing me forward in every step in the journey of my life.

List of Contents

Subject Pa	ıge No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Functional Anatomy of Female Pelvic Floor and Lower Urinary Tract	5
Physiology of pelvic floor	25
Overactive Bladder Syndrome	34
Clinical Neurophysiology of the Pelvic Floor	50
Patients and Methods	60
Results	75
Discussion	128
Conclusion	140
Recommendations	141
Summary	142
References	146
Arabic Summary	

List of Abbreviations

Abbr. Full-term

AUA : American Urological Association

BMI : Body mass index

BPH : Benign prostatic hypertrophy

CMAPs : Compound muscle action potentials

CNEMG : Concentric needle EMG

EAS : External anal sphincter

EMG : Electromyography

EUS : External urethral sphincter

IAS : Internal anal sphincter

ICS : International Continence Society

MRI : Magnetic resonance imaging

OAB : Overactive bladder

PAG : Periaqueductal gray

PMC: Pontine micturition center

PNTML: Pudendal nerve terminal motor latency

PSSEP: Pudendal somatosensory evoked potential

PTNS : Peripheral tibial nerve stimulation

PVR : Postvoid residual volume

QOL : Quality of life

RAIR : Recto-anal inhibitory reflex

SD : Standard deviation

SEP : Somatosensory evoked potentials

SPSS : Statistical package for social science

SSQ : Symptom score questionnaire

SUFU: Society of Urodynamics, Female Pelvic Medicine

and Urogenital Reconstruction

UUI : Urgency urinary incontinence

VD : Vaginal delivery

VPFMC : Voluntary pelvic floor muscle contractions

List of Tables

Table No	v. Citle Pag	ge No.
Table (1):	Comparison between patients and contras regard age, BMI, parity	
Table (2):	Comparison between patients and contras regarding mode of delivery	
Table (3):	Comparison between SSQ of patie before and after sessions	
Table (4):	The determined cut off points for different electrophysiological studies	
Table (5):	Comparison between patients and contraregarding PNTML in msec on both right a left side	ınd
Table (6):	Comparison between patients and contras regards clitroanal reflex latency	
Table (7):	Comparison between patients and contras regards urethroanal reflex latency	
Table (8):	Comparison between patients and contras regards bladder anal reflex latency	
Table (9):	Comparison between patients and contras regards PSSEP P1 latency in msec both right and left sides	on
Table (10):	Comparison between patients a reference values as regards amplitude motor units in millivolt (mv) at both 9 a 3 o'clock	of and

Table (11):	Comparison between patients and reference values as regards the duration of motor units in millisecond (msec) at both 9 and 3 o'clock 92				
Table (12):	Data regarding activity in (msec/sec) at both 9, 3 o'clock in our patients				
Table (13):	Comparison between patients and reference values as regards the Amplitude per turn (mv) at both 9 and 3 o'clock				
Table (14):	Comparison between patients and reference values as regards amplitude of motor units in millivolt (mv) at both 9 and 3 o'clock				
Table (15):	Comparison between patients and reference values as regards the duration of motor units in millisecond (msec) at both 9 and 3 o'clock				
Table (16):	Activity in patients in msec/sec (ms/s) at both 9 and 3 o'clock				
Table (17):	Data regards Amplitude per turn (mv) in our patients at both 9 and 3 o'clock 100				
Table (18):	Summary of neurophysiological findings in our patients:				
Table (19):	Comparison between patients who gave birth by VD and those by CS regards some clinical data:				
Table (20):	Correlation between different electro- physiological data and age, parity in our patients:				

List of Figures

Figure No	o. Eitle	Page No.
Figure (1):	Female pelvic floor anatomy	5
Figure (2):	Female pelvic diaphragm	7
Figure (3):	Leveator anai muscle	9
Figure (4):	Coccygeus muscle	10
Figure (5):	Urogenital diaphragm	12
Figure (6):	Perineal fascia	13
Figure (7):	Innervation of anal sphincters	15
Figure (8):	External anal sphincter	16
Figure (9):	Anatomy of anal sphincters	17
Figure (10):	Anatomy of urinary bladder	19
Figure (11):	Bladder anatomy and relation to surrour structures	•
Figure (12):	Anatomy of the bladder and urethra	24
Figure (13):	Innervation of urinary bladder and ureth	ra 26
Figure (14):	Neurotransmitters control of micturition	28
Figure (15):	Higher centres control of micturition	30
Figure (16):	Conscious and parasympathetic pathwa defecation reflex	•
Figure (17):	Pathway of defecation reflex	33
Figure (18):	St Mark's electrode used in pudendal a conduction study	
Figure (19):	Ring electrodaround Foley catheter use urethra anal and bladder anal reflexes	

Figure (20):	Sites of needle insertion in EAS	58
Figure (21):	Site of needle insertion in EUS	59
Figure (22):	Urodynamic instrument	65
Figure (23):	Urodynamic instrument	65
Figure (24):	EMG instrument used in our study	67
Figure (25):	Electrodes used in our study	68
Figure (26):	Catheter mounted ring electrode	69
Figure (27):	Site of ground and recording electrodes of evoked potential	70
Figure (28):	Biofeedback instrument	72
Figure (29):	Vaginal probe	72
Figure (30):	Frequency of distribution in patients and controls as regards mode of delivery	77
Figure (31):	Comparison between symptom score Questionnaire before and after sessions	78
Figure (32):	Comparison between patients and controls as regards PNTML on both the right side and the left side	80
Figure (33):	Pudendal nerve terminal motor latency	81
Figure (34):	Comparison between patients and controls as regards clitroanal reflex latency	82
Figure (35):	Clitroanal reflex latency	83
Figure (36):	Comparison between patients and controls as regard urethroanal reflex latency	84
Figure (37):	Urethroanal reflex latency	85
Figure (38):	Comparison between patients and controls as regards bladder anal reflex latency	86
Figure (39):	Bladder anal reflex latency	87

	Comparison between patients and controls as regards PSSEP P1 latency on both the right side and the left side	88
	Resting tone of EAS	
	Frequency of distribution in patients as regards resting tone of EAS at 9, 3 o'clock 90	
Figure (43):	Minimal squeeze of EAS	90
_	Comparison between patients and reference values as regards amplitude of motor units at both 9 and 3 o'clock	91
_	Comparison between patients and reference values as regard duration of motor units on both 9 and 3 o'clock	92
Figure (46):	Maximal squeeze of EAS	93
	Comparison between patients and controls as regards amplitude per turn at both 9 and 3 o'clock	94
	Frequency distribution in patients as regards resting tone of EUS at 9, 3 o'clock	96
Figure (49):	Resting tone of EUS	96
Figure (50):	Minimal squeeze of EUS	96
_	Comparison between patients and reference values as regards amplitude of motor units at both 9 and 3 o'clock	97
_	Comparison between patients and reference values as regards duration of motor units at both 9 and 3 o'clock	98
Figure (53):	Maximal activity of EUS9	99
_	Comparison between patients as regards PNTML on both the right side and the left side and mode of delivery)5

Figure (55):	Comparison between patients as regards amplitude of motor units of EAS at both 9 and 3 o'clock and mode of delivery
Figure (56):	Comparison between patients as regards activity of EUS at both 9 and 3 o'clock and mode of delivery
Figure (57):	Comparison between patients as regards the amplitude per turn of EUS at both 9 and 3 o'clock and mode of delivery
Figure (58):	Regression curve shows statistically highly significant negative correlation in patients 113
Figure (59):	Regression curve shows statistically highly significant negative correlation in patients 113
Figure (60):	Regression curve shows statistically highly significant positive correlation in patients 114
Figure (61):	Regression curve shows statistically highly significant positive correlation in patients
Figure (62):	Regression curve shows statistically significant negative correlation in patients 115
Figure (63):	Regression curve shows statistically significant negative correlation in patients 115
Figure (64):	Regression curve shows statistically significant positive correlation in patient
Figure (65):	Regression curve shows statistically significant positive correlation in patients
Figure (66):	Regression curve shows statistically significant positive correlation in patients 117
Figure (67):	Regression curve shows statistically significant negative correlation in patients
Figure (68):	Regression curve shows highly statistically significant positive correlation in patients

Figure (69):	Regression curve shows highly statistically significant positive correlation in patients
Figure (70):	Regression curve shows highly statistically significant negative correlation in patients
Figure (71):	Regression curve shows highly statistically significant negative correlation in patients
Figure (72):	Regression curve shows highly statistically significant positive correlation in patients
Figure (73):	Regression curve shows highly statistically significant positive correlation in patients
Figure (74):	Regression curve shows statistically significant negative correlation in patients
Figure (75):	Regression curve shows highly statistically significant negative correlation in patients
Figure (76):	Regression curve shows statistically significant negative correlation in patients
Figure (77):	Regression curve shows statistically significant positive correlation in patients
Figure (78):	Regression curve shows statistically significant positive correlation in patients
Figure (79):	Regression curve shows highly statistically significant positive correlation in patients
Figure (80):	Regression curve shows highly statistically significant positive correlation in patients
Figure (81):	Regression curve shows highly statistically significant negative correlation in patients
Figure (82):	Regression curve shows highly statistically significant negative correlation in patients
Figure (83):	Regression curve shows statistically highly significant positive correlation in patients

Figure (84): 1	•		•	highly s12	6
Figure (85): 1	_		•	highly ts12	6
Figure (86): 1	•		•	highly ts12	7

ABSTRACT

Objectives:

We have aimed to investigate possible association of subtle neurogenic affection in idiopathic overactive bladder and to determine the role of biofeedback and electrical stimulation in its management.

Material and methods:

A cross-sectional cutoff study in a series of 30 women with idiopathic overactive bladder and 10 healthy women was carried out. The study consisted of symptom score questionnaire and determination of pudendal nerve terminal motor latency, sacral reflexes latencies, PSSEP P1 latency and needle electromyography of the external anal and urethral sphincters. We also gave12 sessions of biofeedback and electrical stimulation.

Results: A highly significant increase of pudendal nerve terminal motor latency time, sacral reflexes latency in our patients than controls, non significant difference between them regards PSSEP P1 latency. There was a picture suggestive of neuropathy in 22 patients (73.3%) during anal EMG and in 23 patients (76.6%) during urethral EMG. Regarding the effect of physical therapy sessions there was a highly significant increase of the score of the questionnaire after sessions.

Conclusions:

There is possible attributing element of neuropathic affection in patients with idiopathic overactive bladder. Biofeedback therapy and electric stimulation to pelvic floor muscles are effective in improvement of symptoms of overactive bladder

Key Words: Overactive bladder, Pudendal nerve terminal motor latency, Sacral reflexes, Anal electromyography, Urethral electromyography.