

EXPERIMENTAL

RESULTS AND DISCUSSION

SUMMARY AND CONCLUSIONS

REFERENCES

Acknowledgment

Praise be to Allah, the cherisher and the sustainer of the world.

I wishe to express my deep gratitude to **Prof. Dr. Mostafa Mohamed Hassan Khalil**, Prof. of Inorganic chemistry, Department of Chemistry, Faculty of Science, Ain Shams University, for his scientific supervision, valuable advice, planning of study, fruitful discussion, valuable assistance and continuous encouragement, critical comments and objective criticism during all stage of the work, his help will always be remembered and not forgotten.

I wishe deeply grateful to **Asso. Prof. Osama Amin Desouky**, Assoc. Prof. of Inorganic Chemistry, Higher Institute of Engineering, Bilbis, Sharqia, for his supervision, active support, guidance, valuable advice and encouragement during entire course of this study.

Also I would like to record gratitude to **Dr.Abd-Elnabi Mohamed Salem,** Lecturer of inorganic chemistry, Department of Chemistry,
Faculty of Science, Ain Shams University, for his supervision.

Thanks and gratitude to all the members of Department of chemistry, Faculty of Science, Ain Shams University, for the help, encouragement and facilities offered to the author through the entire course of this work.

Materials

and

Methods

AIM OF THE WORK

Ain Shams University Faculty of Science Department of Chemistry

Preparation and Characterization of Some Semiconductors from Transition Metal Oxides

A Thesis Submitted in Partial Fulfillment of the Requirements for the degree of Ph.D of Science in Inorganic Chemistry

Presented by

Hamdi Abd El-Karim Khatab Ali

Supervised by

Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic chemistry, Department of Chemistry, Faculty of Science, Ain Shams University

Asso. Prof. Osama Amin Desouky

Asso. Prof. of Inorganic Chemistry, Higher Institute of Engineering, Bilbis, Sharqia

Dr. Abd-Elnabi Mohamed Salem

Lecturer of inorganic chemistry, Department of Chemistry, Faculty of Science, Ain Shams University

Title of the (Ph.D) Thesis: Preparation and Characterization of Some Semiconductors from Transition Metal Oxides

Name of the candidate: Hamdi Abd El-Karim Khatab Ali

Thesis advisors

Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic chemistry, Department of Chemistry, Faculty of Science, Ain Shams University

Asso. Prof. Osama Amin Desouky

Asso. Prof. of Inorganic Chemistry, Higher Institute of Engineering, Bilbis, Sharqia

Dr. Abd-Elnabi Mohamed Salem

Lecturer of inorganic chemistry, Department of Chemistry, Faculty of Science, Ain Shams University

Head of chemistry department

Prof. Dr. Ibrahim H.A. Badr

Contents

	Page
Introduction	. 1
1.1 Semiconductor Materials	1
1.2 Properties and types of semiconductors	3
1.2.1 Pure or intrinsic semiconductors.	3
1.2.2 Extrinsic semiconductors	4
1.2.3 Doping.	4
1.3 Difference between semiconductors and Insulator	6
1.4 Effect of dopants on properties of the semiconductors	8
1.5 Difference between organic and inorganic semiconductors	. 10
1.6 Properties of electronic materials.	11
1.7 Electrical conductivity and resistivity	. 13
1.8 Application of the semiconductors	16
1.9 Transition metal oxides.	17
1.9.1 Zinc Oxide	. 18
1.9.2 Nickel Oxide	. 20
1.9.3 Silicon dioxide	22
1.9.4 Zirconium Oxide	23
1.9.5 Tin dioxide	24
1.9.6 Chromium Oxide	25
1.9.7 Niobium pentaoxide	25
1.9.8 Cobalt oxide	27
1.10 Literature review of transition metal oxide semiconductors	28
1.11.1 Nanotechnology	39
1.11.2 Methods of preparation of nanomaterials from oxide	40
Aim of the work	44

Materials and Methods 45	
2.1 Raw materials 45	,
2.2 Mix composition	5
2.3 Processing	}
2.4 Method of testing)
2.4.1 Physical Properties 49)
2.4.1.1 Determination of firing Shrinkage)
2.4.1.2 Determination of Bulk density, water absorption and Apparent	
Porosity 49	9
2.4.2 XRD analysis (X-ray diffraction analysis)	0
2.4.3 Electric Properties (RCL Circuit)	1
2.4.4 Differential thermal analysis (DTA) and thermogravimetric (TG) 52	2
2.4.5 Microstructure	3
Results and Discussion	4
3.1 Results of physical properties of different groups 54	4
3.2 Results of x-ray diffraction (XRD	5
3.3 Results of Differential Thermal Analysis (DTA)	1
3.4Results of Thermogravimatric Analysis (TG)	6
3.5 Results of Microstructure	С
3.6 Dielectric properties 20	8
3.6.1 Results of Dielectric properties with frequency	9

3.6.2 Results of dielectric loss as a function of frequency	219
3.6.3 Results of resistivity as a function of frequency	227
3.6.4 Results of conductivity as a function of frequency	234
Conclusion.	241
Reference.	252
Arabic summary	