

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

BHOM

Control of Some Phytopathogenic Fungi by Materials from Medicinal Plants

Ву

Yasser Mohamed Hafez Abd El-Karem

B. Sc. Agric. (Soils & Water, 1996),Faculty of Agriculture, Fayoum,Cairo University.

THESIS

Submitted in Partial Fulfilment of the Requirements for the Degree of

Master of Science

In
Agricultural Science

(Agricultural Microbiology)

Department of Agricultural Microbiology,
Faculty of Agriculture, Fayoum
Cairo University.

Supervision Committee

Control of Some Phytopathogenic Fungi by Materials from Medicinal Plants

By Yasser Mohamed Hafez Abd El-Karem

B. Sc. Agric. Science (Soils & Water, 1996),

Faculty of Agriculture, Fayoum, Cairo University.

Thesis for Master of Science Degree

In

Agricultural Microbiology

Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum, Cairo University.

Supervised by:

(1) Prof. Dr. I. M. Ghazi

Professor Emeritus of Agricultural Microbiology, Fac. of Agric., Fayoum, Cairo University.

(2) Dr. Magda, S. Abdalla

Assistant Professor of Agricultural Microbiology, Fac. of Agric., Fayoum, Cairo University.

(3) Dr. E. F. Khalil

Assistant Professor of Agricultural Microbiology, Fac. of Agric., Fayoum, Cairo University.

Approval Sheet

Control of Some Phytopathogenic Fungi by Materials from Medicinal Plants

BvYasser Mohamed Hafez Abd El-Karem

B. Sc. Agric. Science (Soils & Water, 1996), Faculty of Agriculture, Fayoum, Cairo University.

Thesis for Master of Science Degree

In

Agricultural Microbiology

Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum, Cairo University.

Approved by:

1- Prof. Dr. Ismail A. Hosny

Professor Emeritus of Agricultural Microbiology, Fac. of Agric., Cairo University.

[mail lowf

2- Prof. Dr. Rabiae M. A. El-Shehawy

Professor of Agricultural Microbiology, Fac. of Agric., Fayoum, Cairo University.

3- Prof. Dr. Ibrahim M. Ghazi

J.M. Ghaz. Professor Emeritus of Agricultural Microbiology, Fac. of Agric., Fayoum, Cairo University.

Abstract

Four solvents; Water, 50% ethanol/ water (E/W), chloroform and hexane were used for the preparation of extracts from 10 medicinal plants'materials. These extracts were tested for their antimicrobial effect against 4 bacterial strains, 4 fungal strains and 1 yeast strain. Test organisms varied in their susceptibility to different plant extracts. However, the ethanol/water and chloroform extracts were generally more efficient than the other extracts. The inhibitory effect of oil emulsions of Basil and Geranium were tested at the concentration of 1: 30 (oil: water). The results indicated a powerful antifungal effect of these oils. The basil oil showed a relatively higher activity than that of geranium.

The concentration of 20 and 25% of Khilla extract was the MIC against *Phytophthora infestans* and *Fusarium oxysporum* f.sp. *lycopersici*. The concentration of 7.5 and 10% completely stopped spore germination as the MIC for basil and geranium oil emulsions, respectively against the *Fusarium* strain. The 5% concentration of oil emulsions from geranium and basil was the MIC against the *Phytophthora* strain. The MIC of geranium and basil oils' emulsions against *A. flavus* was the concentration of 12.5% in the medium. For the determination of MIC for the geranium oil emulsion against *A. niger*, the concentration of 5% prevented spore germination for both *Aspergillus* strains. The MIC of basil oil emulsion was the concentration of 7.5%.

Pot experiments were carried out to study the effect of geranium and basil oils' emulsions at the concentrations of 1.5, 3 and 5 folds of MIC for controlling tomato wilt disease caused by *Phytophthora infestans* and *Fusarium oxysporum* f.sp. *lycopersici*. The data showed that increasing the concentration of oil emulsion and the increase in dipping period of seedlings' roots before planting resulted in a lower death rate of tomato seedlings. The best effect for geranium oil emulsion was recorded at the concentration of 5 MIC and 10 minutes dipping period. For the basil oil emulsion, the best results were obtained from the treatment of 3MIC with dipping for 10 minutes.

Grain storage experiment was carried out for controlling fungal spoilage of stored maize. The treatment with oil emulsions before storage was the active way to control grain spoilage than the treatment of infected grains with these oils.

<u>Keywords:</u> Medicinal plants, Aromatic plants, Antibacterial, Antifungal, Natural products, Plant disease control, Stored grains protection.

Acknowledgment

First and foremost, all the praises and limitless thanks are to God who gave me the capability to do this research.

I wish to express my deepest gratitude and sincere appreciation to **Prof. Dr. I. M. Ghazi**, Professor of Agricultural Microbiology, Faculty of Agriculture, Fayoum, Cairo University, for his indispensable supervision, suggesting the problem, valuable advice and encouragement till this work has been achieved.

Sincere appreciation and thanks to Dr. Magda S. Abd-alla, Associate Professor of Agricultural Microbiology, Faculty of Agriculture, Fayoum, Cairo University, for her guidance and encouragement to perform this study.

A real gratefulness and prayers to his soul, to the man who passed away before seeing this work. To **Dr. E. F. Khalil**, late-Associate Professor of Agricultural Microbiology, Faculty of Agriculture, Fayoum, Cairo University.

I'm very thankful to all members of Agricultural Microbiology Department, for their cooperation.

I'm gratefully acknowledge the Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University for providing the fungal strains.

List of Contents

Subject	Page
1. Introduction	1
2. Review of literature	3
2.1. Effect of antimicrobial principles activity from	
medicinal plants on microorganisms	3
2.1.1. Bacteria	3
2.1.2. Fungi	13
2.1.3. Yeast	23
2.2. Application of medicinal plants extracts as natural	
agents	25
2.2.1. Food Preservation	25
2.2.2. Control of plant diseases	29
2.2.3. Protection of stored grains	33
3. Materials and Methods	35
3.1. Materials	35
3.1.1. Plants used	35
3.1.2. Test organisms	35
3.1.3. Media used	36
3.1.4. Soil	37
3.1.5. Cultivar	37
3.2. Methods	38
3.2.1. Preparation of plant extracts	38

3.2.2. Preparation of fungal spore suspension	38
3.2.3. Antimicrobial activity	38
3.2.4. Greenhouse pot experiments	39
3.2.4.1. Layout of the experiment	39
3.2.5. Application of the active plant oils as a prophylactic agent for stored grains from fungal spoilage	40
4. Results and Discussion	42
4.1. Detection of antimicrobial activity of plant extracts	42
4.1.1. Activity against bacteria and yeast	42
4.1.2. Activity against phytopathogenic molds	47
4.2. Determination of the Minimum Inhibition	
Concentration (MIC)	59
4.3. Greenhouse pot experiments	71
4.4. Application of plants'oils as a protective agent for	
stored grains from fungal spoilage	74
5. Summary and Conclusion	77
6. References	
Arabic Summary	

List of Tables

Title	Page
Table 1. General data of studied plants	35
Table 2. List of test organisms used	36
Table 3. Effect of active plant extracts against bacteria and yeast	43
Table 4. Effects of active plant extracts against Fusarium oxysporum f.sp. lycopersici	48
Table 5. Inhibitory effects of Ocimum basilicum and Pelargonium graveolens oils against Fusarium	
Table 6. Effects of active plant water extracts against	51
Phytophthora infestans	53
Table 7. Effects of active plant ethanol: water (1:1 v/v) extracts against <i>Phytophthora infestans</i>	55
Table 8. Effects of active plant chloroform extracts against Phytophthora infestans	56
Table 9. Inhibitory effects of Ocimum basilicum and Pelargonium graveolens oils against Phytophthora infestans	58
Table 10. Inhibitory effects of Ocimum basilicum and Pelargonium graveolens oils against Aspergillus flavus	60
Table 11. Inhibitory effect of Ocimum basilicum and Pelargonium graveolens oils against Aspergillus niger	61

Table 12. Effect of Ammi visnaga (chloroform extract), Ocimum	
basilicum and Pelargonium graveolens oil'emulsions	
against Fusarium oxysporum f.sp. lycopersici	63
Table 13. Effect of Ammi visnaga (chloroform extract), Ocimum	
basilicum and Pelargonium graveolens oil'emulsions	
against Phytophthora infestans	65
Table 14. Inhibitory effect of Ocimum basilicum and	
Pelargonium graveolens oils against Aspergillus	
flavus	68
Table 15. Effect of oils on death percentage of Fungus disease	
Phytophthora infestans	72
Table 16. Effect of oils on death percentage of Fungus disease	
Fusarium oxysporum f.sp. lycopersici	72
Table 17. Application of oils emulsions for protection of stored	
grains	76

List of Figures

	Title	Page
Figure	1. Effect of different concentrations of Ocimum	
	basilicum and Pelargonium graveolens oils and	
	Ammi visnaga extract on the growth of Fusarium	
	oxysporum f.sp. lycopersici	64
Figure	2. Effect of different concentrations of Ocimum	
	basilicum and Pelargonium graveolens oils and	
	Ammi visnaga extract on the growth of Phytophthora	
	infestans	66
Figure	3. Effect of different concentrations of Ocimum	
	basilicum and Pelargonium graveolens oils on the	
	growth of Aspergillus flavus	69
Figure	4. Effect of different concentrations of Ocimum	
	basilicum and Pelargonium graveolens oils on the	
	growth of Aspergillus niger	70