

Effect of Irradiated and Non- irradiated Egyptian and Chinese anise on the Susceptibility of Multidrug Resistant Bacterial Isolates to Different Antibiotics

AThesis

Submitted for the degree of Master of Science as a partial fulfillment for requirements for M. Sc. Degree in Microbiology

By

Yara Mostafa Mahmoud Elsayed Azzam

B.Sc. Microbiology- Biochemistry (2007)
Faculty of Science
Ain- Shams University
National Center for Radiation Research and Technology

Supervised By

Prof. Dr. Mohamed Khaled Ibrahim

Professor of Bacteriology- Chairman of Microbiology department Faculty of Science Ain shams University

Prof. Dr. Zakaria Ahmed Mattar

Professor of Microbiology Microbiology Department National Center for Radiation Research and Technology (NCRRT)

Dr. Hanan Hassan Abdel-khalek

Assistant Professor of Microbiology
Microbiology Department
National Center for Radiation Research and Technology (NCRRT)

Microbiology Department Faculty of Science Ain- Shams University 2016

تأثير الينسون المصرى و الينسون الصينى المشعع و غير المشعع على حساسية المعزولات البكتيرية متعددة المقاومة للمضادات الحيوية المختلفة

رسالة مقدمة للحصول علي درجة الماجستير في العلوم كجزء مكمل لمتطلبات رسالة الماجستير بكلية العلوم في الميكروبيولوجي في الميكروبيولوجي من الطالبة

يارا مصطفي محمود السيد عزام

بكالوريوس علوم (2007),قسم الميكروبيولوجي-الكيمياء الحيوية

تحت اشراف

ا.د./ محمد خالد ابراهیم

أستاذ البكتريولوجي-رئيس قسم الميكروبيولوجي كليه العلوم- جامعه عين شمس 1.د./ زكريا أحمد مطر

استاذ الميكر وبيولوجي- المركز القومي لبحوث و تكنولوجيا الاشعاع هيئه الطاقه الذريه

ا.م.د./ حنان حسن عبد الخالق

استاذ مساعد الميكر وبيولوجي- المركز القومي لبحوث و تكنولوجيا الاشعاع هيئه الطاقه الذريه

قسم الميكروبيولوجي كلية العلوم-جامعة عين شمس 2016

بسم الله الرحمن الرحيم

نَرَفَعُ دَرَجَاتِ مَن نَشَّكَاءُ مُ وَفَوقَ كُلِّذِي عَلْمٍ وَفَوقَ كُلِّذِي عَلْمٍ

عُلِيمُرُ

DEDICATION

To my parents Mr. Mostafa Mahmoud Azzam and Mrs. Fatma Amin Abu Elso'oud, thank you for your love support and your tremendous help. Your constant motivation and faith has always given me hope. Now, this was your dream through me.

To my husband **Dr. Elsayed Mohamed Salih**, thank you for your support and encouragement; without your patience I would not be succeeded.

To my brother Eng. Mahmoud Mostafa and my sister Dr. Israa Mostafa for their support and encouragement.

Finally, this thesis is dedicated to my three beautiful marvelous daughters Farida, Alyaa and Dorra.

ACKNOWLEDGEMENT

All praises and thanks are for **ALLAH** who is the entire source of all knowledge and wisdom endowed to mankind.

I would like to express my deepest gratitude to **Prof. Mohamed Khaled Ibrahim** for his advice, guidance and encouragement as well as his academic experience and great efforts with me.

I wish to express my sincere gratitude to **Prof. Zakaria Ahmed Mattar** for his keen supervision, experience, facility of my difficulties, guidance, patience, time as well as his encouragement.

My heartfelt gratitude and appreciation to Ass. Prof. Hanan Hassan Abdel-Khalek for her encouragement, support, patience and her continuous efforts throughout my thesis periode. She provided good teaching, guidance and valuable helping.

My deepest gratitude to all stuff of Microbiology department, National Center for Radiation Research and Technology for their friendship and advice.

Last, but not least my deep thanks and grateful are extended to my family and my friends, their love, understanding and unfailing support has made everything possible.

I thank all those who, in different ways, have walked beside me along the way; offering support and encouragement, challenging my thinking, and teaching me to consider alternative views.

شكر

الحمد لله الذي هدانا و ما كنا لنهتدي لو لا أن هدانا الله .

اتقدم بخالص الشكر و التقدير و الامتنان الي أساتذتي الأفاضل الذين كانوا عونا لي في البحث و العمل.

كل التقدير و الاحترام الي أ.د./ محمد خالد ابراهيم: أستاذ البكتريولوجي و رئيس قسم الميكروبيولوجي, كلية علوم, جامعة عين شمس و ذلك لإشرافه و مساعدته و تشجيعه لي.

كل التقدير و الاحترام الي أد./ زكريا أحمد مطر: أستاذ الميكروبيولوجي, قسم الميكروبيولوجيا الاشعاع, هيئه الطاقه الميكروبيولوجيا الاشعاع, هيئه الطاقه الذريه و ذلك علي اشرافه و تشجيعه و مساعدته لي وامدادى بكل احتياجات البحث و العمل.

أمد./ حنان حسن عبد الخالق: استاذ مساعد الميكروبيولوجي, قسم الميكروبيولوجيا الاشعاعيه بالمركز القومي لبحوث و تكنولوجيا الاشعاع, هيئه الطاقه الذريه, لها مني كل الاحترام و التقدير لإشرافها و مساعدتها في كل خطوات البحث, فقد كانت بمثابه الأخت الكبيره و المعلمه الجليله.

Abstract

Antibiotic resistance in bacteria is becoming a serious problem, especially after the emergence of multidrug-resistant strains. To overcome this problem, new and effective antibacterials or resistance modulators are highly needed and plant kingdom represents a valuable source of these compounds. In this study we investigated the antibacterial activity of Egyptian anise Essential Oil (EEO), Egyptian anise Waste Residue Extract (EAWRE), Chinese anise Essential Oil (CEO) and Chinese anise Waste Residue Extract (CAWRE) against 100 isolates belonging Gram positive (Streptococcus to two four Gram negative bacteria (Klebsiella spp., Staphylococcus spp.) and Escherichia coli, Acinetobacter spp. and Pseudomonas spp.), also we investigated the resistance modification activity of both oils and postdistillation extracts against six clinical isolates (Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia Acinetobacter baumannii and Pseudomonas aeruginosa). Phenolic compounds of anise wastes (EAWRE and CAWRE) were determined by HPLC and the components of EEO and CEO were detected by Gas Chromatography. The antibacterial activity of anise waste extracts and anise essential oils assays were performed by using inhibition zone diameters, MIC and MBC. Synergistic evaluation of anise waste extracts and anise essential oils combined with certain known antibiotics like cephradine, chloramphenicol, tetracycline and amoxicillin was carried out using disc diffusion method, MIC, MBC and the fractional inhibitory concentration (FIC) indices. Assessment of bacterial morphology of *Pseudomonas aeruginosa* treated with tested oils and extracts alone and in combination with tetracycline was carried out using scanning electron microscopy (SEM). The results showed that HPLC method has been developed for the determination of 25 phenolic compounds from anise waste extracts; while GC analysis detected the presence of trans-anethole as the major component of both oils. EAWRE, CAWRE, EEO and CEO have significant antibacterial activity against all of the test bacteria. CAWRE was found to have higher amounts of phenolic compounds contents that might be responsible for its comparatively higher antibacterial activity than EAWRE. Also CEO was found to possess higher anethole content that could be responsible for its higher effectiveness compared to EEO. Neither the antibacterial activity of both postdistillation extracts nor the activity of both essential oils was significantly affected by irradiation at 10 and 30 kGy. The combination of anise waste extracts and the tested antibiotics mostly showed synergistic effect. Synergistic interaction was most expressed against Streptococcus pneumoniae and Staphylococcus aureus by tetracycline and chloramphenicol; Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii and Escherichia coli by cephradine, amoxicillin and tetracycline. In contrast, all tested combinations of EEO and CEO with tested antibiotics resulted in synergistic interaction against all tested isolates. SEM observations confirmed the antibacterial activity of EEO, CEO, EAWRE and CAWRE; as in all cases the bacteria lost its original shape and irregularity was observed. Synergism was also confirmed through the detected severe morphological changes in cells of Synergistic interaction resulted Pseudomonas aeruginosa. combination of EAWRE, CAWRE, EEO and CEO with commercial antibiotics could be useful in fighting emerging drug-resistant bacteria. These results suggest that both aniseeds and star anise waste residue methanolic extract (post-distillation) and essential oils could be good economic sources of multidrug resistance inhibitors. The results also indicate that indiscriminate coadministration of antibiotics with some aromatic and medicinal plant wastes such as those from aniseeds and star anise wastes could be therapeutically wasteful. Their use in combination with conventional antibiotics should be further studied for in vivo which may lead to the development of much needed drug enhancing preparations.

Contents

ntroduction	
eview of Literature	
Antibiotics	
.1. Antibiotics History	
2. Antibiotics Production.	
3. Antibiotics Classification	
4. Adverse Effects of Antibiotics	
Resistance to Antibiotics	
2.1. Multidrug resistance to Antibiotics	
2.2. Antibiotic Resistance Threats by Microorganism	
2.2.1. Microorganisms with a Threat Level of Urgent	
2.2.1. Interoorganisms with a Tineat Level of Orgent	
2.2.1.2. Carbapenem-resistant Enterobacteriaceae	
2.2.1.3. Drug-resistant <i>Neisseria gonorrhoeae</i>	
2.2.2.Microorganisms with a Threat Level of Serious	
2.2.2.1. Multidrug-resistant <i>Acinetobacter</i>	
2.2.2.2. Drug-resistant <i>Campylobacter</i>	
2.2.2.3. Extended Spectrum β-Lactamase producing	
Enterobacteriaceae (ESBLs)	
2.2.2.4. Vancomycin-resistant <i>Enterococcus</i> (VRE)	
2.2.2.5. Multidrug-resistant <i>Pseudomonas aeruginosa</i>	
2.2.2.6. Drug-resistant non-typhoidal <i>Salmonella</i>	
• • • • • • • • • • • • • • • • • • • •	
2.2.2.7. Drug-resistant Salmonella Typhi	
2.2.2.8. Drug-resistant Shigella	• • •
2.2.2.9. Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA)	
2.2.2.10. Drug-resistant <i>Streptococcus pneumoniae</i> .	
2.2.2.10. Drug-resistant streptococcus pheumontae.	
2.2.3. Microorganisms with a Threat Level of Concerning	
2.2.3.1. Vancomycin-resistant <i>Staphylococcus aureus</i>	••
(VRSA)	
2.2.3.2. Erythromycin-resistant Group A <i>Streptococcus</i>	
2.2.3.3. Clindamycin-resistant Group B <i>Streptococcus</i> 2.3. Risks of Antibiotic Resistance	
1 2	
1 6 3	
2.3.3. Rheumatoid Arthritis	
2.3.4. Dialysis for End-stage Renal Diseases	
2.3.5. Organ and Bone marrow Transplantations	• •