

#### AIN SHAMS UNIVERSITY

#### **FACULTY OF ENGINEERING**

**Electronics Engineering and Electrical Communications** 

# **Design and Implementation of Electroencephalogram System**

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications )

by

#### Said Mohsen AboSreea

Bachelor of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Supervised By

#### Prof.Dr. Abdel Haleem Zekry

Electronics and Communications Department Faculty of Engineering - Ain Shams University

#### **Associate Prof.Dr.Mohamed Abouelatta**

Electronics and Communications Department Faculty of Engineering - Ain Shams University

#### **Dr.Ahmed Ali Mohamed El- Shazly**

Electronics and Communications Department El-Gezeera Academy

Cairo - (2016)



#### AIN SHAMS UNIVERSITY

#### FACULTY OF ENGINEERING

Electronics & Communications Engineering Department

### **JUDGMENT COMMITTEE**

Thesis: Design and Implementation of Electroencephalogram System

Degree: Master of Science in Electrical Engineering

Name: Saeed Mohsen AboSreea Hassan

| NAME, TITLE AND AFFILIATION                                                                                                        | <u>Signature</u> |
|------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Prof.Dr. Amal Zaki Mohamed Head of Microelectronics Department Electronics Research Institute                                      |                  |
| <b>Prof.Dr. Mohamed Amin Dessouky</b> Electronics and Communications Department Faculty of Engineering - Ain Shams University      |                  |
| <b>Prof.Dr. Abdelhalim Abdelnaby Zekry</b> Electronics and Communications Department Faculty of Engineering - Ain Shams University |                  |

**Date of examination:** 27/7/2016

### **Statement**

This thesis is submitted as a partial fulfillment of Master of Science in Electrical Engineering (Electronics and Communications), Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

| Said Mohsen AboSreea |
|----------------------|
| Signature            |
|                      |

Date: 31 July 2016

### Curriculum Vitae

Name : Said Mohsen AboSreea

Date of birth : 18/10/1990

Place of birth : Egypt

Last academic degree : B.Sc. in Electrical Engineering

Field of specialization : Electronics and Communications

Name of University : Thebes High Institute of Engineering

Date of issued degree : May 2013

Current job : demonstrator

### **ABSTRACT**

The EEG is important in the medical field. The EEG used to record the brain activities that are used in diagnoses strokes. Recently, the advancement in technology of the brain signals enabled the control of equipment that could help the disabled in their daily life such as wheelchair and robots. Now, mindwave and emotive epock are used in EEG Systems. The EEG recording systems play a major role in the Brain Computer Interface machines where the brainwave signals are given as controls. There is development in transmission of these signals into different platforms based on the portability of applications. This thesis presents a virtual electronic system for measuring the EEG signals. The system consists of electrodes, instrumentation amplifier, filters and a DAQ card with LabVIEW application on a personal computer. The system is developed for displaying, measuring, analyzing and recording the EEG signals. The system is practically implemented with success where the experimental results are verified with simulation results. Hence, the EEG system is developed in order to be portable. The portability is in the first step is based utilizing a data acquisition card DAQ and laptop. Our own system is a low cost system, since the LabVIEW plotter application is developed the EEG system. So, our main target is to design and implement a light weight EEG system with three electrodes. These electrodes are used to sense the signals on human brain which are produced by neurons. The main problems with the brain electrical signals are that they are very small. So, they have to be amplified with special amplifiers. Such amplifiers are called instrumentation amplifiers. These amplifiers are characterized by high gain and common mode rejection ratio in addition to high input impedance. With these specifications, human brain signals can be amplified to get the EEG signal. The filter circuits are also required to clean the contamination and artifacts in EEG signal. The EEG system is developed based on our design with DAQ card and computer. The system is a simple and low cost for acquiring the EEG signals.

#### **Keywords:**

Electroencephalogram (EEG), Data Acquisition (DAQ), Laboratory Virtual Instruments Engineering Workbench (LabVIEW).

### **Thesis Summary**

This thesis introduces a methodology for enhancing acquisition of the EEG signals. The thesis is divided into four chapters organized as follows:

Chapter One: This chapter explains the importance of electroencephalogram and the development of medical instrumentation systems. Also, the evolution of smart systems is expressed in the medical instrumentation field. This chapter presents electronic system for measuring brain signals. The system consists of electrodes, amplifiers and filters with EEG plotter application is developed on a computer for displaying and measuring the EEG signals. A circuit was developed to amplify the low amplitude brainwave signals and a band pass filter to eliminate the unwanted frequencies. A DAQ card was used to convert the analog signals to digital signals and transmit them into the computer by using USB interface.

**Chapter Two:** provides an overview of the previous researches in the EEG systems.

Chapter Three: this chapter explains the design of the EEG circuit and Data Acquisition. Hence, a circuit is designed to amplify the EEG signals and to remove the noise. The EEG circuit consists of electrodes, amplifiers and filters, DAQ card for A/D conversion .A LabVIEW graphical user interface design which are interfaced to develop the prototype electroencephalogram system.

Chapter Four: this chapter introduces implementation of EEG circuit on a PCB to reduce some noise in the EEG system and allow for smaller product. Only four resistors, two capacitors, two integrated circuits and three electrodes are used in our EEG circuit implementation. Also, a LabVIEW software is presented implementation where a LabVIEW application is developed for acquiring, controlling, measuring, analyzing, processing and saving the EEG signals on the computer.

Finally, the thesis ends by extracting conclusions and stating future work that might be done based on this work.

#### **Keywords:**

Electroencephalogram (EEG), Data Acquisition (DAQ), Laboratory Virtual Instruments Engineering Workbench (LabVIEW).

### Acknowledgment

A long way has passed until this moment; a way that was full of many ups and downs. And finally, it is the time to thank all those who have contributed to this final outcome.

First of all, I would like to thank **GOD** for giving me the capability to learn all what I have learned in my life and to give me the ability to write this thesis.

After GOD, I grant all the success realized in my life to **my parents** to whom I owe all good things I learned and will learn till I die.

Also I would like to dedicate this acknowledgement to all the people who helped me making it happen especially for **my friends for** his continuous support and understanding without which I have probably quitted a long time ago, **my brothers who** sacrificed many happy moments I had to be busy away from them. I'm also grateful to all **my family** and **my dear friends** for their support and continuous help all the way long.

I also want to express my gratitude to **Prof. Dr. Abdel Halim Zekry** who's not only served as my supervisor but also encouraged me and provided me with valuable guidance and indispensable help. His words of advice, his trust, and his patience and understanding helped me to finish this work. He has been a role model to me.

And finally, special thanks to my supervisors **Dr. Mohamed Abdel hamid** and **Dr. Ahmed Ali El shazly** for their support till finalizing this research.

It is always impossible to personally thank everyone who has facilitated successful completion of this thesis. To those of you who I didn't specifically name, I also give my thanks for moving me towards my goal.

### **Table of Contents**

| List of Figures                      | XI   |
|--------------------------------------|------|
| List of Tables                       | XIII |
| List of Abbreviations                | XIV  |
| Chapter 1: Electroencephalogram      | 1    |
| 1.1 Introduction                     | 1    |
| 1.2 Electroencephalography           | 2    |
| 1.3 The EEG Electrodes               | 4    |
| 1.4 The Amplifiers                   | 4    |
| 1.5 Analog Signal Processing         | 5    |
| 1.6 Digital Signal Processing        | 7    |
| 1.7 EEG Acquisition Practices        | 7    |
| 1.8 Smart Acquisition Systems        | 9    |
| 1.9 Summary                          | 9    |
| Chapter 2: Literature and Background | 11   |
| 2.1 Introduction                     | 11   |
| 2.2 Development of EEG Systems       | 11   |
| 2.3 EEG Electrode Technology         | 13   |
| 2.4 Digital EEG Requirements         | 14   |
| 2.5 Standard Electrode Placement     | 15   |
| 2.6 Importance of Brain              | 15   |
| 2.7 Major region of brain            | 16   |
| 2.7.1 Forebrain                      | 16   |
| 2.7.2 Midbrain                       | 16   |
| 2.7.3 Hindbrain                      | 16   |
| 2.8 Brain anatomy                    | 16   |
| 2 & 1 Brain Structura                | 10   |

| 2.8.2 Cerebrum                                    | 19 |
|---------------------------------------------------|----|
| 2.9 Brain computer interface                      | 20 |
| 2.9.1 Neural Interfaces                           | 21 |
| 2.9.2 Mental Strategies and Brain Patterns        | 22 |
| 2.10 EEG Signal Processing                        | 22 |
| 2.11 Power Spectrum of Signal                     | 23 |
| 2.12 Clinical EEG Bands                           | 24 |
| 2.13 EEG Processing Techniques for monitoring EEG | 26 |
| 2.14 Summary                                      | 28 |
| Chapter 3: EEG System Design                      | 30 |
| 3.1 Introduction                                  | 30 |
| 3.2 EEG Electrodes                                | 30 |
| 3.3 Instrumentation Amplifier Design              | 31 |
| 3.4 Band pass Filter & gain stage Design          | 33 |
| 3.5 Power Management                              | 35 |
| 3.6 Digital Conversion                            | 35 |
| 3.6.1 Data Acquisition                            | 36 |
| 3.6.2 DAQ Card                                    | 37 |
| 3.7 LabVIEW Application                           | 37 |
| 3.8 Summary                                       | 37 |
| Chapter 4: EEG System Implementation              | 39 |
| 4.1 Introduction                                  | 39 |
| 4.2 Analog EEG Circuit Implementation             | 39 |
| 4.2.1 Instrumentation Amplifier                   | 40 |
| 4.2.2 Band Pass Filter                            | 40 |
| 4.3 A Data Acquisition system                     | 41 |
| 4.3.1 The function of the blocks of a DAQ system  | 41 |
|                                                   |    |

| 4.3.2 Features of DAQ Card 6008                              | 41 |
|--------------------------------------------------------------|----|
| 4.3.3 How Select DAQ Assistant icon and setup configurations | 42 |
| 4.4 LabVIEW Software                                         | 45 |
| 4.4.1 LabVIEW Software Implementation                        | 45 |
| 4.5 Implementation of Designed EEG Acquisition System        | 48 |
| 4.6 Experimental setup                                       | 50 |
| 4.7 Summary                                                  | 51 |
| Conclusions                                                  | 53 |
| Future Work                                                  | 54 |
| BIBLIOGRAPHY                                                 | 55 |
| Extracted Paper                                              | 61 |
|                                                              |    |

## **List of Figures**

| Fig.1.1. S | Structure of Brain                                       | 2  |
|------------|----------------------------------------------------------|----|
| Fig.1.2. ( | Op-Amp Euivalent Circuit                                 | 5  |
| Fig.1.3. I | Inverting and Non-Inverting Amplifiers                   | 5  |
| Fig.1.4. A | Active Filter Models                                     | 6  |
| Fig.1.5. I | Frequency Response of Low Pass and High Pass Filter      | 7  |
| Fig.1.6. I | Evolution of EEG Recording Systems                       | 8  |
| Fig.2.1. I | Electrodes location                                      | 15 |
| Fig.2.2. I | Brain lobes                                              | 16 |
| Fig.2.3. I | Frontal lobe                                             | 17 |
| Fig.2.4. I | Details lobes                                            | 18 |
| Fig.2.5. I | Brain Structure                                          | 18 |
| Fig.2.6. I | Left and Right brain functions                           | 19 |
| Fig.2.7. ( | Cerebral cortex                                          | 20 |
| Fig.2.8. N | Non-invasive BCI                                         | 21 |
| Fig.2.9. I | Invasive BCI                                             | 21 |
| Fig.2.10.I | Resolution versus recording method                       | 22 |
| Fig.2.11.I | EEG waveforms for different physical states              | 25 |
| Fig.2.12.I | Producing the power spectrum from the raw EEG signal     | 26 |
| Fig.2.13.I | Power Spectrum of four standard frequency bands          | 27 |
| Fig.2.14.7 | Typical EEG is recorded and processed                    | 27 |
| Fig.3.1. I | Block diagram of EEG Acquisition System                  | 30 |
| Fig.3.2. A | Ag-AgCl Electrodes used for EEG Acquisition              | 31 |
| Fig.3.3. A | AD620 Instrumentation Amplifier circuit                  | 32 |
| Fig.3.4. I | Instrumentation Amplifier                                | 32 |
| Fig.3.5. I | Frequency Response of designed instrumentation amplifier | 33 |

| Fig.3.6. Band pass filter and gain stage                            | 34 |
|---------------------------------------------------------------------|----|
| Fig.3.7. Frequency Response of Band Pass Filter on Multisim         | 34 |
| Fig.3.8. ±5 V Voltage Regulator Circuit to Power the Analog Circuit | 35 |
| Fig.3.9. Block Diagram of Systems Digital Data Conversion           | 36 |
| Fig.3.10.Data acquisition System                                    | 39 |
| Fig.4.1. Final design by using ARES software                        | 40 |
| Fig.4.2. Final PCB construction of EEG circuit                      | 40 |
| Fig.4.3. A DAQ system                                               | 41 |
| Fig.4.4. Data Acquisition Card USB 6008                             | 42 |
| Fig.4.5. DAQ Assistant                                              | 42 |
| Fig.4.6. Measurment setup                                           | 43 |
| Fig.4.7. Channel number                                             | 43 |
| Fig.4.8. Voltage Setup                                              | 44 |
| Fig.4.9. Wiring Type                                                | 44 |
| Fig.4.10.EEG Plotter control and display panel on a computer        | 46 |
| Fig.4.11.LabVIEW virtual instrument (VI) block diagram              | 47 |
| Fig.4.12.Displaying EEG signal in time domain with gain changing    | 47 |
| Fig.4.13.EEG Plotter Connection Status                              | 48 |
| Fig.4.14.Received EEG Data per 1 second                             | 48 |
| Fig.4.15.Setup of EEG System                                        | 49 |
| Fig.4.16.Display of EEG Signal for 0.5 second                       | 49 |
| Fig.4.17.Spectrum of raw EEG signal                                 | 50 |
| Fig.4.18.Experimental Setup                                         | 50 |

### **List of Tables**

| Table.1.1. Importance of Regions of Brain | 2  |
|-------------------------------------------|----|
| Table.1.2. Classifications Of Brain waves | 3  |
| Table 2.1. Information on EEG Bands       | )4 |

### **List of Abbreviations**

EEG - Electroencephalogram

FFT - Fast Fourier Transform

DAQ - Data Acquisition

PC - Personal Computer

USB - Universal Serial Bus

GUI - Graphical User Interface

CMRR - Common Mode Rejection Ratio

ADC - Analog Digital Converter

LabVIEW - Laboratory Virtual Instruments Engineering Workbench

### Chapter 1

### Electroencephalogram

#### 1.1 Introduction

The Electroencephalogram is important in the medical field. The EEG used to record the brain activities that are used in diagnoses strokes. Recently, the advancement in technology of the brain signals enabled the control of equipment that could help the disabled in their daily life such as wheelchair and robots. Now, mindwave and emotive epock are used in EEG Systems. The EEG recording systems play a major role in the Brain Computer Interface machines where the brainwave signals are given as controls. The electroencephalogram is a recording of the voltage potential across the human scalp. These potentials are recorded from different regions of the scalp. Each region has its own importance according to the neuron activity at different locations of the brain [1-3].

The brain signals are very small  $(10\mu V \text{ to } 100\mu V)$  [1]. These signals are collected by using the EEG electrodes that attached to the human scalp [3]. Some noise come from the surrounding environment and the body and the external electrical sources is added. Hence, it is necessary processing the noise. The signals which collected from the electrodes are preprocessed for amplification and noise removal using the analog circuit and then transferred to the computer using DAQ card.

This thesis aims to develop the portable instrument to acquire the EEG signals and use to the systems which monitor patient. A prototype EEG system is developed that collects the EEG signal from the human brain and transmits into a computer for analysis of some parameters.

This thesis aimed for the development of a prototype EEG system which includes analog EEG circuit for preprocessing and digital circuit for transmission into a computer. The analog EEG circuit is designed to perform the amplification of the raw EEG signal obtained using electrodes and noise removal. The DAQ Card is used to convert the analog EEG signals to digital signals and transmit the sampled data into a