RE-REFINING OF USED LUBRICATING OIL USING SOLVENT EXTRACTION AND VACUUM DISTILLATION

By

Eng. Mohamed Sayed Abdo Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Chemical Engineering

FACULTY OF ENGINEEREING, CAIRO UNIVERSITY
GIZA, EGYPT

2014

RE-REFINING OF USED LUBRICATING OIL USING SOLVENT EXTRACTION AND VACUUM DISTILLATION

By

Eng. Mohamed Sayed Abdo Mohamed
A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Chemical Engineering

Under the supervision of

Prof. Dr. Fatma Ashour
Chemical Engineering Department, Cairo University, Faculty of
Engineering

Prof. Dr. Hamdan NorEl-din
Former Head of Chemical Engineering Department In High Institute of
Technology, In Damitta

FACULTY OF ENGINEEREING, CAIRO UNIVERSITY
GIZA, EGYPT

2014

RE-REFINING OF USED LUBRICATING OIL USING SOLVENT EXTRACTION AND VACUUM DISTILLATION

By

Eng. Mohamed Sayed Abdo Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In Chemical Engineering

Approved by the Examining Committee

Prof. Dr.: Mohamed Mahmoud El-Sukkary,

Petrochemical Dept., Egyptian Petroleum Research Institute

Prof. Dr.: Nagwa Mahmoud Mohamed El-Mansy,

Chemical Engineering Dept., Cairo University, Faculty of Engineering

Prof. Dr.: Fatma Ashour,

Chemical Engineering Dept., Cairo University, Faculty of Engineering

FACULTY OF ENGINEEREING, CAIRO UNIVERSITY
GIZA, EGYPT
2014

Engineer: Mohamed Sayed Abdo Mohamed.

Date of Birth: 25 / 6 / 1989.

Nationality: Egyptian.

E-mail: m.sayed1989@gmail.com.

Phone: 01007273539.

Address: 68, st. No.3, Army officers' buildings, Shobra El-

kheima, Qalyubia, Egypt.

Registration date: 1/10/2011.

Awarding date:

Degree: Master.

Department: Chemical engineering.

Supervisor: Prof. Dr.\ Fatma Ashour.

Prof. Dr.\ Hamdan NorEl-din.

Prof. Dr.\ Mohamed Mahmoud El-Sukkary. (External examiner)

Prof. Dr.\ Nagwa Mahmoud Mohamed El-Mansy. (Internal examiner)

Prof. Dr.\ Fatma Ashour. (Thesis main advisor)

Title of Thesis:

RE-REFINING OF USED LUBRICATING OIL USING SOLVENT EXTRACTION AND VACUUM DISTILLATION

Keywords:

Used oil, Re-refining Solvent extraction, butyl alcohol, isopropyl alcohol, Vacuum distillation, Experimental design, Optimization, Net profit.

Summary:

This thesis was objected to make a semi complete study about re-refining of used lubricating oil by solvent extraction, using butyl alcohol and isopropyl alcohol as solvents, followed by fractional vacuum distillation.

Experimental work was held in "Egyptian Petroleum Research Institute". Used lube oil which is the feed of experimental work is taken as a sample from "Suez Oil Processing Company".

The target of experimental work is to make treated lube oil specifications meet the European and Egyptian specifications of neutralize oil (treated used oil), and determine the optimum operating variables, then make calculation of factorial experimental design and corresponding net profit.

The results of experimental work revealed that: Treated oil with solvent extraction followed by vacuum distillation will meet Egyptian and European specs.

Acknowledgment

First of all, I would like to thank Allah for giving me the effort to do this thesis.

I wish to express my sincere thanks to Prof. Dr. Fatma Ashour and Prof. Dr. Hamdan NorEl-din for their sustained guidance and keen supervision.

Thanks, appreciation and gratitude for my mother, my aunt, my father, my brothers, my sisters for their encouragement and patience.

Thanks, appreciation and gratitude for my friends especially Eng. Hazem Mohamed Abdallah for his assistance, encouragement and patience.

Finally, I would like to thank everyone who helped me in this study.

Dedication

I dedicate my dissertation work to Prof. Dr. Hamdan's Soul, A special feeling of gratitude to him whose words of encouragement and push for tenacity ring in my ears, I will always appreciate all he has done.

"May his soul rest in peace"

Table of Contents

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES	VIII
ABBREVIATIONS	X
ABSTRACT	XII
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	4
2.1. Introduction to lubrication	5
2.1.1. History of lubrication	5
2.1.2. Lube Oil properties	6
2.1.3. Lube Oil function	8
2.2. Lube oil production	10
2.2.1. Lube oil feed stock	10
2.2.2. Atmospheric distillation process	12
2.2.3. Vacuum distillation process	13
2.2.4. Solvent extraction process	15
2.2.5. De-Waxing process	20
2.2.6. De-Asphalting process	24

2.2.7. Hydrotreating process	24
2.3. Lube oil additives	26
2.4. Introduction to used oil	32
2.4.1 The meaning of waste oil/used oil	32
2.4.2. Contaminants in used oil	33
2.4.3. Environmental effect of spilling used oil	39
2.4.4. History of re-refining	40
2.5. Possibilities of recycling of used lubricating	oils 45
2.5.1. Used Oil Reclamation	48
2.5.2. Minimization processes at source / the reprodused mineral oils	_
2.5.3. Re-refining processes / the regeneration mineral oils	
2.6. Process economics	76
2.6.1. Economics of base oil	76
2.6.2. Economics of used oil	77
2.6.3. Re-refining economics	77
CHAPTER 3: EXPERIMENTAL WORK	93
3.1. Schematic plan of experiments	94
3.1.1. Solvent refining	97
3.1.2. Centrifugation and fractional distillation	98
CHAPTER 4: RESULTS AND DISCUSSION	99
4.1. Results and discussion	100

4.1.1. Tables of results	100
4.1.2. Discussion of results	100
1. Effect of time of mixing and settling	102
2. Effect of solvent feed ratio on the qualit oil	•
3. Effect of solvent type on the quality oil	of reclaimed
4.2. Market survey	
4.3. Optimization of operating conditions	131
4.4. Net profit calculations	135
CHAPTER 5: CONCLUSION	136
REFERENCES	139

List of Tables

Table 2.1: Lube oil additives and their effect
Table 2.2: Pollutants origins in motor oil additives
Table 2.3: The greatest used oil plants in the European Union
Table 2.4: Properties of used oil, intermediate treated oil and end treated oil
Table 2.5: Propeties of used oil feed to Vaxon process
Table 2.6: Yields of treating used oil by Vaxon process
Table 2.7: The properties of the light and heavy oil by Vaxon process 69
Table 2.8: The properties of the light, mid. and heavy oil by Hylube process
Table 2.9: Re-refining economics \$/gallon
Table 2.10: European waste oil collection by country
Table 2.11: Total lubricants demand by region 2002
Table 2.12: U.S.A lube oil demand by type
Table 2.13: Energy saving of re-refining used oil vs. burning used oil Energy saving of re-refining used oil vs. burning used oil
Table 2.14: Environmental impacts of used oil re-use options
Table 3.1: Physical properties of butyl alcohol and isopropyl alcohol 95
Table 4.1: Physical and chemical characteristics of dehydrated used oil Feed
Table 4.2: Effect of Time of Mixing and settling
Table 4.3: Effect of solvent Feed Ratio on the properties of used lubricating oil, which processed by Extraction with pure butyl alcohol
Table 4.4: Effect of solvent Feed Ratio on the Properties of processed by extraction with isopropyl alcohol
Table 4.5: Effect of solvent composition on the properties of processed by Extraction with mixture of butyl alcohol and isopropyl alcohol 106

Table 4.6: Correlation between yield and total acid no. of oil processed by extraction with isopropyl alcohol and butyl alcohol
Table 4.7: Correlation between yield and total acid no. Processed by extraction with mixtures of butyl alcohol and isopropyl alcohol
Table 4.8: Metals analysis for used lubricating oil
Table 4.9: Fractional distillation of used lube oil (IBP 290°C) into its narrow fractions
Table 4.10: Characteristics of the fractions resulted from vacuum fractional distillation
Table 4.11: Physical-chemical Characteristics of fractions from solvent stripped oil (pure butyl alcohol, solvent to oil ratio 4/1)
Table 4.12: Physical-chemical Characteristics of oils produced by the three techniques used
Table 4.13: Market survey data
Table 4.14: Properties of Mobil used oils
Table 4.15: Metal content of Mobil used oils
Table 4.16: Properties of Co-op used oils
Table 4.17: Metal content of Co-op used oils
Table 4.18: Properties of Misr used oils
Table 4.19: Metal content of Misr used oils
Table 4.20: Properties of fresh lube oil
Table 4.21: Calculation of energy required to recover solvent
Table 4.22: Calculation of total cost to extraction process
Table 4.23: Calculation of the least square method

List of Figures

Figure 2.1: Chemical composition of lube oil and its effect on lube
quality11
Figure 2.2: Sequence of refining processes used for lube oil production 12
Figure 2.3: Process flow diagram of vacuum distillation process
Figure 2.4: The relationship between VI and lube oil properties 15
Figure 2.5: Effect of chemical composition on VI and stability of lube oil 15
Figure 2.6: Comparison between physical properties of different solvents 16
Figure 2.7: The block diagram of solvent extraction process
Figure 2.8: Raffinate recovery techniques
Figure 2.9: Extract recovery techniques
Figure 2.10: The block diagram of de-waxing process
Figure 2.11: Process flow diagram of de-waxing process
Figure 2.12: Process flow diagram of de-asphalting process
Figure 2.13: viscosity modifier name, abbreviation and polymer structure 29
Figure 2.14: Different systems for treating used oils
Figure 2.15: Management systems for used oil
Figure 2.16: The environmental effect of oil spilt in water 39
Figure 2.17: Hierarchy of waste management 44
Figure 2.18: Block diagram of reclamation and re-refining 47
Figure 2.19: Basic outline of acid/earth treatment technologies 50
Figure 2.20: Diagram of vacuum distillation and hydrogenation processes 52
Figure 2.21: Thin film evaporator 54
Figure 2.22: Block diagram represent KTI technology for used oil re refining
Figure 2.23: Block diagram represents BERC or NIPER technology 58
Figure 2.24: Block diagram represent Kafety Kleen technology 60
Figure 2.25: Block diagram of Viscoluble technology
Figure 2.26: The thin film evanorator parts

Figure 2.27: Spent oil re-refining unit in Alexandria Petroleum Company 75
Figure 2.28: Recovery of lube oil from crude oil and used oil
Figure 2.29: Ranking of used oil recycling techniques as waste management. 84
Figure 2.30: Used oil flow diagram
Figure 3.1: Aldershow column
Figure 3.2: Solvent extraction installation
Figure 3.3: Schematic diagram for experiments
Figure 4.1: Effect of S/F ratio on the yield of processed oil 10
Figure 4.2: Effect of S/F ratio on the viscosity index of processed oil 108
Figure 4.3: Effect of S/F ratio on the total acid number of processed oil 109
Figure 4.4: Effect of S/F ratio on the sulfur content of processed oil 110
Figure 4.5: Effect of S/F ratio on the pentane insoluble matter of processed
oil
Figure 4.6: Effect of velocity on pour point used lube oil
Figure 4.7: Effect of velocity on viscosity index of used lube oil 128
Figure 4.8: Effect of velocity on metal content of used lube oil
Figure 4.9: The semi-portable machine used in waste oil re-refining 135

Abbreviations

APC: Alex Petroleum Company.

ASTM: American Society for Testing and Materials.

CFR: Code of Federal Regulations.

DIFM: Do It For Me.

DIY: Do It Yourself.

DOE: Department Of Energy.

DWO: De-Waxed oil.

EP: Extreme pressure.

EPA: Environmental Protection Agency.

FDA: Food and Drugs Administration.

ICAT: International Association for Clean Technology.

KTI: Kinetics Technology International.

GCD: Gas Chromatography Distillation.

GNP: Gross National Product.

MEK: Methyl Ethyl Ketone.

MIBK: Methyl Isobutyl Ketone.

MIDOR: Middle East Oil Refining Company.

NAAQS: National Ambient Air Quality Standards.

NMP: N-Methyl-2-pyrrolidone.

PCB: Poly Chlorinated Bi-Phenyls.

PROP: Phillips' Re-Refined Oil Process.

RCRA: Resources Conservation and Recovery Act.

S.A.E: Society of Automotive Engineers.

S/F: Solvent to Feed Ratio.

TAN: Total Acid Number.

TBN: Total Base Number.

TCT: Thermal Clay Treatment.

TDA: Thermal De-Asphalting.

TFE: Thin Film Evaporator.

VDU: Vacuum Distillation unit.

VCFE: Vacuum Cyclone Flash Evaporator.

VI: Viscosity Index.

VPS: Vacuum pipe still.

VM: Viscosity Modifier.