

Application of Monte Carlo Simulation for the Medical Linear Accelerator in Radiotherapy

Thesis Submitted

to

Physics Department Faculty of Science, Ain Shams University

In

Partial Fulfillment of the Requirements for the Master Degree in Science

By Ahmed Sayed Hamed Ali

Supervisors

Prof. Dr. Amr Radi

Physics Department, Faculty of Science, Ain Shams University

Prof. Dr. Noha Emad

Ionizing Radiation Metrology Lab, National Institute for Standards

Dr. Elsayed Salama

Physics Department, Faculty of Science, Ain Shams University

2014

Degree: Master Degree in Science (MSc. degree in Physics)

Title: Application of Monte Carlo Simulation For the Medical Linear Accelerator in Radiotherapy

Name: Ahmed Sayed Hamed Ali

Thesis Advisors	Approved
Prof. Dr. Amr Radi Physics Department, Faculty of Science, Ain Shams University	
Prof. Dr. Noha Emad Ionizing Radiation Metrology Lab, National Institute for Standards	
Dr. Elsayed Salama Physics Department, Faculty of Science, Ain Shams University	

Name: Ahmed Sayed Hamed ALi

Titled: Application of Monte Carlo Simulation For the Medical Linear Accelerator in Radiotherapy

Degree: MSc. degree

Submitted to: Physics department, Faculty of science, Ain Shams University.

بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيمِ

وَقُل رَّبِّ زِدْنِي عِلْمًا

In the Name of Allah, the Most Gracious, the Most Merciful

".. And Say: My Lord! Increase me in Knowledge"

"TAHA/114, the Glorious Quran"

To

Mother

Father in God's mercy

Brothers

Sisters

And

My fiancee Ola

CONTENTS

ACKNOWLEDGMENT	I
ABSTRACT	II
SUMMARY	III
CHAPTER 1	
INTRODUCTION	
1.1 Introduction	2
1.2 Types of Radiation Therapy	2
1.2.1 External radiation therapy	2
1.2.2 Internal radiation therapy	2
1.2.3 Systemic radiation therapy	3
1.2.4 Stereotactic radiosurgery and stereotactic radiotherapy	3
1.3 The Sources of Energy for Radiation Therapy	3
1.3.1 External radiation sources	3
1.3.1.1 x-rays	3
1.3.1.2 Gamma	3
1.3.1.3 Particle beams	2
1.3.2 Internal radiation sources	
1.4 Literature review	-4 1
1.4 Literature review	4
CHAPTER 2	
THEORETICAL ASPECTS	
2.1 Introduction ·····	
2.2. Photon Transport	11
2.2.1. Photon interaction processes	11
2.2.2. Photon cross sections	14
2.3. Electron Transport	15
2.3.1. Electron interaction processes	15
2.3.2. Stopping powers	17
2.4 Principle of Monte Carlo Simulation	18
2.5 Monte Carlo Codes for Radiotherapy Applications	
2.5.1 Monte Carlo technique in radiotherapy	19
2.5.1 Monte Carlo technique in radiotherapy 2.6 The GEANT4 Toolkit	20
2.6.1 Introduction	20
2.6.2 Electromagnetic Physics Processes in GEANT4	
2.6.2.1 Introduction	20
2.6.2.2 Standard EM processes	
2.6.2.3 Low energy livermore EM processes	21
2.6.2.4 low energy penelope	21
2.7 The Aim of the Work	21

CHAPTER 3 SIMULATION SETUP

3.1 Introduction ·····	23
3.2 Basic Parts of Medical Linear Accelerators	23
3.3 Simulation Setup	24
3.3.1 The experimental measurements	25
3.3.2 Simulation code part 1- phase space formation	
3.3.3 Simulation code part 2-dose distributions	
CHAPTER 4	
RESULTS AND DISCUSSION	
4.1 Introduction ·····	43
4.2 Phase Space Formation	43
4.2.1 Hits type	44
4.2.2 Energy spectrum	44
4.2.3 Spatial distribution of hits in the scoring plane	45
4.2.4 Simulated hits direction	47
4.3 Simulation of Dose Distribution in the Water Phantom	48
4.4 Comparison between simulated and experimental data	49
CONCLUSIONS	53
REFERENCES	55
APPENDICES	62

ACKNOWLEDGMENT

The author likes to express his deepest gratitude to Prof. Dr. Amr Radi the professor in physics department, faculty of science, Ain shams university, Prof. Dr. Noha Emad the professor in radiation measurements department, National Institute for Standards and Dr. ElSayed Salama in physics department, faculty of science, Ain shams university, for their valuable supervision, and grateful cooperation creative discussions.

Deep thanks and sincere gratitude to Physicist Mostafa Abd Al Moez, Kasr El Aini, Cairo University, for his valuable discussions and creative cooperation.

I would like to thank the family of Centre for theoretical physics for their continuous support.

Ahmed Sayed Hamed Ah

ABSTRACT

ABSTRCT

GATE (Geant4 Application for Tomographic Emission) is a general purpose simulation platform for PET. SPECT and radiotherapy applications. Built on top of the Geant4 simulation toolkit, it provides multiple new features with the objective to ease use of Geant4 in the field of medical physics. Handling Gate is carried out by scripting via a command language instead of C++ coding. In this study, gantry of a 6 MV photon beam of medical linear accelerator (LINAC), based on the detailed information manufacturer's was simulated GATE/GEANT4. This simulation was performed by using more than 2x 10⁹ primary electrons. The simulation process is divided into two main stages. The first stage is to run the code to simulate photons and electrons transport through the Linac head, and record the information of the simulated hits crossing a scoring plane above the secondary collimator in a phase space file (PhS). The second stage is to generate hits histories from a given phase space file, and calculate dose distributions in a phantom relative to reference depth 1.5 cm at the isocenter. Evaluation of percentage depth dose distribution (PDD) and flatness symmetry (lateral dose profiles) in water phantom were performed. Comparison between experimental data and simulated were carried out for three field sizes $5 \times$ 5, 10×10 and 15×15 cm². Results show good agreement between computed and measured PDD, Moreover the lateral dose profiles at 15, 50, and 100 mm depth are compatible with the measured values. Overall, GATE/GEANT4 code is a promising applicable Monte Carlo program in radiotherapy applications.

SUMMARY

SUMMARY

Most of commercial Treatment Planing Syatem (TPS), use an analytical calculation for estimating dose to patient, Such methods are less accurate in practice. In alternative, Monte Carlo calculation using GATE/GEANT4, can be used for accurate dose calculation. This technique represents a powerful tool for simulation of complex geometrical shapes and material composition by using different physics models.

In the present work, a Monte Carlo simulation for 6 MV high energy photon medical linear accelerator (Linac), using GATE/GEANT4 was introduced. The gantry of a VARIAN 600C LINAC was simulated according to the manufacturer's detailed information was simulated. The simulation processes were performed on two stages. The first stage includes simulation of the accelerator gantry resulting to phase space file (PhS) formation, the phase space file (PhS) was generated by using more than 2x 10⁹ primary electron. Such a phase space file records all information of the simulated hits crossing a scoring plane, such as energy, orientation, type, charge and position of the particles crossing the scoring plane. While the second stage was executed by interactions of recorded hits from a given (PhS) file, with a water phantom of dimensions 48cm×48cm×35cm at source-surface distance (SSD) = 100 cm, were the percentage depth dose (PDD) and the flatness symmetry for different field sizes were calculated relative to reference depth 1.5 cm at the isocenter. A macro files were created for the purposes analysis of beam characteristic at two stations in the treatment head.

During the physics sitting construction, the geometrical specification of the accelerator , as well as the beam energy were taken into consideration. A 6 MV circular electron beam with a gaussian energy distribution accelerated down to hit the tungsten and cupper target were bremsstrahlung photons are generated. These photons and secondary particles are interacting with the flattening filter, monitor chamber, mirror and a pair of Jaws.

Experimental dose measurements were carried out by the aid of a dosimetry system include computerized welhofer WP 700 water phantom version 3.5. This phantom consisting of a water-filled tank with a scanning volume of $48 \times 48 \times 48$ cm³ and two cylindrical water proof ion chambers each of sensitive volume 0.147 cm³ and wall thickness of 0.4 mm (RFA 300 Scanditronix) were used.

The computed percentage depth dose (PDD) for three field sizes 5×5 , 10×10 and 15×15 cm² and the flatness symmetry for each fiels size at 15, 50, and 100 mm depths in water phantom , are compared with experimental measurements. Results show good agreement between computed and measured PDD. Moreover the lateral dose profiles at 15, 50, and 100 mm depth are compatible with the measured values.

LIST OF TABLES

		Page
Table(2-1)	Monte Carlo codes for	19
	radiotherapy applications	
Table(4-1)	Percentage number of simulated	44
	hits type in station one and station	
	two	