

Ain Shams University Faculty of Pharmacy Microbiology & Immunology Dept.

Alternative Approaches for the Control of Methicillin Resistant *Staphylococcus aureus*

A Thesis

Submitted in Partial Fulfillment of the Requirments for the Master's Degree

In
Pharmaceutical Sciences
(Microbiology and Immunology)

By

Mona Mohammad Hesham El Gayar

Bachelor of Pharmaceutical Sciences, Faculty of Pharmacy, Ain Shams University, Y...

Ain Shams University Faculty of Pharmacy Microbiology & Immunology Dept.

Alternative Approaches for the Control of Methicillin Resistant *Staphylococcus aureus*

A Thesis

Submitted in Partial Fulfillment of the Requirments for the Master's Degree

In Pharmaceutical Sciences (Microbiology and Immunology)

By

Mona Mohammad Hesham El Gayar

Bachelor of Pharmaceutical Sciences, Faculty of Pharmacy, Ain Shams University, Y...

Under Supervision of

Prof. Dr. Nadia A. El-Haleem Hassouna, PhD

Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University

Prof. Dr. Mohammad Mabrouk Aboulwafa, PhD

Chairman of National organization for research and control of biological products, Giza, Egypt
Professor of Microbiology and Immunology
Faculty of Pharmacy, Ain Shams University

Dr. Khaled Mohamed Anwar Aboshanab, PhD

Associate Professor of Microbiology and Immunology Faculty of Pharmacy, Ain Shams University

Acknowledgment

□ يا رب لك الحمد كما ينبغي لجلال وجهك ولعظيم سلطانك

First of all, my sincere thanks to "**Allah**" for giving me the power and patience to complete this work.

I would like to express my deepest thanks to **Prof. Dr. Nadia A. El-Haleem Hassouna**, Professor of Microbiology and Immunology, and founder of the Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, for her valuable scientific supervision, constructive advice and continuous guidance throughout my work.

My great thanks and appreciation is expressed to **Prof. Dr. Mohammad Mabrouk Aboulwafa**, Chairman of National organization for research and control of biological products, Giza- Egypt, former Vice Dean for Community service and Environmental development and former Head of Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, for kindly providing valuable scientific supervision and for his constructive criticism throughout this study.

I would like to thank **Dr. Khaled Mohammed Aboshanab**, Associate Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, for his strong support, continuous following up and giving me his valuable time and effort to complete this work

Grateful thanks to **Dr. Mohammad Hafez**, former lecturer of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University for his encouragement and help.

I also want to thank **Dr. Khaled Mahmoud Abd El-Aziz**, Associate Professor of Public health and Preventive Medicine, Faculty of Medicine, Ain Shams University for helping me in doing statistical analysis of my study.

Great thanks to **Dr.Adel Bakeer**, Professor of pathology, Faculty of Medicine, Cairo University for carrying out the histopathology examinations of my animal study.

Many thanks to the Faculty of Medicine, **Al-Azhar** University for helping me in tissue culture techniques as well as **VACSERA** for giving me the chance to take a lot of experience in tissue culture and animal model study.

Great thanks are extended to my dear **colleagues** and to all the **workers** at the Faculty of Pharmacy, Ain Shams University for their help and support during my work.

I am so thankful for having a great mother **Prof. Dr. Tahany Ahmed Abdraouf**, Professor of Microbiology and Immunology, Faculty of Medicine, Ain Shams University, and a wonderful father **Prof. Dr. Hesham El Gayar**, Professor and head of Endocrinology department, Internal Medicine, Faculty of Medicine, Ain Shams University who advised, supported and motivated me a lot throughout my whole study

Many thanks and appreciation to my beloved **family** and **friends** for continuous support, encouragement and sincere help throughout my whole life.

Last but not least, I would like to express my deepest and most sincere gratitude to my precious **husband** for his patience, understanding, motivation and everlasting support.

وآخر دعوانا أن الحمد لله رب العالمين.

Mona Hesham El Gayar

كلية الصيدلة قسم الميكروبيولوجيا والمناعة

"التوجهات البديلة للتحكم في عدوى الستافيلوكوكس أوريس المقاومة للميثيسيللين"

رسالة مقدمة للحصول على درجة الماجستير في العلوم الصيدلية (ميكروبيولوجيا و مناعة)

إعداد منى محمد هشام الجيار بكالوريوس العلوم الصيدلية كلية الصيدلة - جامعة عين شمس (٢٠٠٧)

كلية الصيدلة قسم الميكروبيولوجيا والمناعة

"التوجهات البديلة للتحكم في عدوى الستافيلوكوكس المقاومة للميثيسيللين"

رسالة مقدمة للحصول على درجة الماجستير في العلوم الصيدلية (ميكروبيولوجيا و مناعة)

المداد

مني محمد هشام الجيار

بكالوريوس العلوم الصيدلية كلية الصيدلة - جامعة عين شمس (٢٠٠٧)

تحت إشراف

أ.د. نادية عبدالحليم حسونـة

أستاذ الميكروبيولوجيا والمناعة كلية الصيدلة – جامعة عين شمس

أ.د. محمد مبروك أبوالوف

رئيس الهيئة القومية للرقابة على المستحضرات الطبية و اللقاحات وأستاذ الميكروبيولوجيا والمناعة كلية الصيدلة ـ جامعة عين شمس

أ.م.د خالد محمد أنور أبو شنب

أستاذ مساعد الميكروبيولوجيا والمناعة كلية الصيدلة – جامعة عين شمس

LIST OF CONTENTS

I	Page
List of abbreviations	viii
List of figures	X
List of tables	XV
Abstract	xvii
Introduction	1
	4
LITERATURE REVIEW	•
1. Historical background	4
2. Prevalence of MRSA	7
3. Types of MRSA	8
3.1 MRSA infections in hospital	8
3.2 MRSA infections in the community	9
4. Virulence factors and pathogenesis of MRSA	12
4.1 Virulence factors involved in bacterial adherence	15
4.1.1 Fibrinogen/fibrin binding protein or clumping factor (Clf)	16
4.1.2 Fibronectin binding protein A (FnBPA)	17
4.1.3 Elastin binding protein	18
4.2 Virulence factors involved in bacterial colonization and	
persistence	18
4.2.1 Small colony variants (SCVs)	18
4.2.2 Biofilms	19
4.3 Virulence factors involved in evading or destroying host	
defenses	23
4.3.1 Capsule	23
4.3.2 Protein A	23
4.3.3 Panton-Valentine leukocidin (PVL)	24
4.3.4 phenol-soluble modulins (PSMa)	26
4.4 Virulence factors involved in tissue invasion and penetration	27
4.4.1 Protease	27
4.4.2 Nucleases and hyaluronatelyase	27
4.4.3 Lipases	28
4.5 Virulence factors involved in toxin mediated diseases and/or	
sepsis	28
4.5.1 Hemolysins	29

4.5.1.1 Alpha hemolysin (Hla)	29
4.5.1.2 Beta-hemolysin	30
4.5.1.3 Gamma-hemolysins (Hlg)	31
4.5.1.4 Delta-toxin	31
4.5.2 Superantigens (SAgs)	32
4.5.3 Exfoliative toxins	33
4.5.4 Peptidoglycan, lipoteichoic acid	33
4.6 Other virulence factors with poorly defined role in pathogenesis	34
5. Regulation of virulence factors expression in S. aureus	36
6. Identification of MRSA	38
6.1 Identification of <i>S. aureus</i>	38
6.1.1 Microscopical examination	38
6.1.2 Biochemical characters	38
6.1.3 Latex agglutination tests	39
6.1.4 DNase and heat-stable nuclease tests	39
6.1.5 Molecular tests	39
6.2 Methicillin (oxacillin) susceptibility testing	40
6.2.1 Disc diffusion method	40
6.2.2 Mannitol salt agar containing oxacillin (MSAO)	41
6.2.3 Latex agglutination.	41
6.2.4 Quenching fluorescence method	42
6.2.5 Molecular methods	42
7. Management strategies of MRSA	43
8. Molecular epidemiology and mechanism of resistance in MRSA	45
9. Future prospects of alternative therapy for MRSA	48
9.1 Antivirulence therapies	49
9.1.1 Microbial attachment and invasion	50
9.1.2 Biofilms and chronic infections associated infections	51
9.1.3 Quorum sensing	53
9.1.4 Bacterial toxins	54
9.1.5 Type III secretion	54
9.2 Vaccine therapy	55
9.3 Bacteriophage therapy	56
9.4 Probiotic therapy	57
MATERIALS AND METHODS	60
1. Microorganisms	60
2. Cell line	60

3. Animals 60			
4. Biological products and body fluids	61		
5. Chemicals and other products			
6. Culture media	64		
6.1 Readymade media and media components	64		
6.2 In house-formulated media	64		
6.2.1 Blood agar	64		
6.2.2 Media used for detection of protease activity	64		
6.2.3 Media used for detection of lipase activity	65		
6.2.4 Media used for long term preservation of the isolates	65		
6.3 Tissue culture media	65		
6.3.1 Eagle's minimum essential medium with Earl's balanced salts	65		
6.3.2 Medium used for maintenance of <i>Vero</i> cells	67		
6.3.3 Medium used for propagation and monolayer formation of			
Vero cells	67		
7. Buffers, solutions and reagents	67		
7.1 Phosphate buffer	67		
7.2 Phosphate buffered saline (PBS)	68		
7.3 HCl solution	68		
7.4 NaOH solution	68		
7.5 Saline solution	68		
7.6 Bouin's fixative Solution	68		
7.7 Mercuric chloride solution	69		
7.8 Azocasein solution	69		
7.9 Trichloroacetic acid solution	69		
7.10 Trypsin solution	69		
7.11 Mammalian cell lysis solution	69		
7.12 Gentamicin solution	70		
7.13 Trypan blue stain solution	70		
7.14 McFarland standard solution	70		
7.15 Garlic extract	70		
7.16 Gram stain reagents	70		
7.16.1 Gram's crystal violet	70		
7.16.2 Gram's iodine	71		
7.16.3 Safranin	71		
8. Device	71		
9. Other used materials	72		
10. Recovery of microorganisms from clinical specimens	73		

11. Purification and preservation of the obtained clinical bacterial
isolates
12. Categorization of the collected clinical bacterial isolates
12.1 Gram reaction test
12.2 Pigment production
12.3 Growth on mannitol salt agar
12.4 Growth on blood agar
12.5 Catalase test
12.6 Coagulase tests
12.6.1 Tube coagulase test
12.6.2 Slide agglutination test
13. Screening the collected isolates for methicillin resistance using
antibiotic susceptibility test (disc diffusion method)
13.1 Preparation of tested isolate's inoculums
13.2 Agar disc diffusion method
14. Measurement of bacterial growth
15. Preparation of the tested isolate's inoculums
16. Preparation of culture supernatant of the tested MRSA isolate
for extracellular virulence factors' assessment
17. Investigating different virulence determinants of MRSA isolates
17.1 Extracellular virulence factors assays
17.1.1 Evaluation of protease production
17.1.1.1 Preliminary assessment
17.1.1.2. Protease assay
17.1.2 Evaluation of lipase production
17.1.3 Evaluation of hemolysin production
17.1.3.1 Preliminary assessment
17.1.3.2 hemolysin assay
17.2 Biofilm assay
17.3 Adherence and invasion assays
17.3.1 Maintenance of <i>Vero</i> cell line
17.3.2. Determination of bacterial adherence and invasion to
Vero cells
17.3.2.1 Preparation of the <i>Vero</i> cell monolayer
17.3.2.2 Preparation of the tested isolate's inoculums
17.3.2.3 Adherence and invasion assays
17.3.3 Verification of gentamicin solution (300 μg/ml)
18. MRSA resistance profile

19. Searching for agents that antagonize the MRSA virulence	
determinants	87
19.1 Testing some agents with potential antibiofilm activities	87
19.1.1 Selected agents and their applied concentration	87
19.1.2 Testing the ability of some agents to prevent biofilm	
formation of MRSA isolates	90
19.2 Testing some agents with potential antiadherent activities	90
19.2.1 Selected agents and their applied concentrations	90
19.2.2 Testing the ability of the agents to eradicate bacteria	
pre-adhered to Vero cells	92
20. Antipathogenic effect of cell free supernatants of Lactobacillus	
rhamnosus against MRSA isolates	92
20.1 Cell-free culture supernatant preparation of tested	
Lactobacillus strain	92
20.2 Testing the antibacterial activity of the prepared cell-free	
Supernatant against MRSA isolates	93
21. In vivo testing of the selected anti-virulence agent(s) in animal	
model of skin infection	93
21.1 Selected agents	93
21.2 Laboratory animals	94
21.3 In <i>vivo</i> testing of the selected anti-virulence agents	94
21.3.1 Testing microbial virulence in animal model with	
MRSA skin infection	94
21.3.2 Testing the effect of two selected agents against	
MRSA infected skin model	94
21.3.3 Histopathology examination of the autopsy	
specimens	98
21.3.4 Behavioral response of the involved rats	98
21.3.5 Effect of royal jelly on healing properties of	
injured rats	98
22- Statistical analysis	99
RESULTS	101
1. Recovery of microorganisms from clinical specimens	101
2. Categorization and identification of the collected clinical isolates .	101
3. Screening the collected isolates for methicillin resistance using	
antibiotic susceptibility test (cefoxitin disc diffusion method)	104
4. Investigating different virulence determinants of MRSA isolates	107

4.1 Extracellular virulence factors production	107
4.1.1 Studying protease production activity among the	
collected MRSA isolates	107
4.1.2 Studying lipase production activity among the	
collected MRSA isolates	110
4.1.3 Studying hemolysin production activity among the	
collected MRSA isolates	111
4.2 Studying biofilm forming capability among the collected	
MRSA isolates	114
4.3 Studying adherence and invasion of the collected MRSA	
isolates to Vero cells	117
5. MRSA isolates resistance profile	119
6. Searching for agents that antagonize the MRSA virulence	
determinants	120
6.1 Testing some agents for potential antibiofilm activities	120
Mucolytics	121
The anticoagulant heparin	121
• Sugars	121
Polysaccharide	121
Pharmaceutical excipients (Surfactants)	124
Chelating agents	124
Metal ions	124
Non steroidal anti-inflammatory drugs	128
Natural products	128
6.2 Comparative evaluation of the different tested agents for their	120
antibiofilm activities against tested MRSA isolates	132
6.3 Testing some agents for potential antiadherent activities	
	135
•Mucolytics	135
•The anticoagulant heparin	135
• Sugars	135
Pharmaceutical excipients (Surfactants)	138
Natural products	138
6.4 Comparative evaluation of the different tested agents for their	4.45
antiadherent activities against tested MRSA isolates	142
8. Antipathogenic effect of cell free supernatants of <i>Lactobacillus</i>	
rhamnosus against MRSA isolates	145

9. In vivo testing of the selected anti-virulence agent(s) in animal	
model of skin infection	145
9.1 Testing microbial virulence in animal model with MRSA	
skin infection	145
9.2 Testing the effect of two selected agents against MRSA	
infected skin model	155
9.3 Effect of royal jelly on healing properties of injured rats	184
	10-
DISCUSSION	185
Recovery of MRSA isolates from various clinical specimens	
particularly those of medical importance	186
II) Investigating some virulence determinants of the recovered	
MRSA isolates in <i>vitro</i>	189
III) In <i>vitro</i> testing of different non-antibiotic agents for their	
capability to antagonize unique virulence determinants of some	
selected MRSA isolates and invasion of the bacterial isolates to	
Vero cells	199
IV) In <i>vivo</i> testing of some selected promising anti-virulence agents	177
	213
using animal model of MRSA skin infection	_
❖ Conclusion.	222
❖ Future perspectives of this study	223
SUMMARY	224
REFERENCES	231
ARABIC SUMMARY	1
	-

LIST OF ABBREVIATION

Abbreviation	Definition
ACUC	Animal care and use committee
ATCC	American type culture collection
CA-MRSA	Community-associated methicillin-resistant S. aureus
CAP	Community-associated pneumonia
CDC	The centers for disease control and prevention
CFU	Colony forming unit
Clf	Clumping factor
CLSI	The clinical and laboratory standards institute
CoNS	Coagulase-negative S. aureus
CV	Crystal violet
EbpS	Elastin binding protein
EDTA	Ethylene diamine tetra acetic acid
FAO	Food and agricultural organization
FBS	Fetal bovine serum
FGE	Fresh garlic extract
FnBPA	Fibronectin binding protein a
GP	Group
H&E	Hematoxyline and eosin
HA-MRSA	Healthcare-associated methicillin-resistant S. aureus
Hla	Alpha hemolysin
Hrs	Hours
LTA	Lipoteichoic acid
MEM	Minimum essential medium
MH	Mueller-hinton agar
Min	Minutes
MR	Code for MRSA
MRS	deMan, Rogosa and Sharpe
MRSA	Methicillin-resistant S. aureus
MSA	Mannitol salt agar
MSCRAMMs	Microbial surface components recognizing adhesive matrix
	molecules
MSSA	Methicillin-senstive S. aureus
NAC	N-acetylcysteine

NICU	Neonatal intensive care unit
NSAIDs	Non steroidal anti-inflammatory drugs
OD	Optical density
ORSA	Oxacillin- resistant S. aureus
PBP	Penicillin binding proteins
PBP2a	Altered penicillin-binding protein 2a
PBS	Phosphate buffered saline
PepG	Peptidoglycan
PIA	Polysaccharide intercellular adhesion
PSMa	Phenol-soluble modulins
PVL	Panton-valentine leukocidin
QS	Quorum sensing
RBCs	Red blood cells
RJ	Royal jelly
SAgs	Superantigens
SCVs	Small-colony variants
SLS	Sodium lauryl sulphate
SPSS	The software program statistical package for social science
SSSS	Staphylococcal scalded-skin syndrome
SSTIs	Skin soft tissue infections
TSB	Trypticase soy broth
TSST-1	Toxic shock syndrome toxin-1
VRSA	Vancomycin resistant S. aureus
WHO	The World Health Organization

ix