

BEHAVIOR OF FLANGED CONCRETE BEAMS WITH WEB OPENING UNDER PURE TORSION

By Eng. Ahmed El sayed Salem Salama

A Thesis Submitted to
The Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Mater Degree
In
Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

BEHAVIOR OF FLANGED CONCRETE BEAMS WITH WEB OPENING UNDER PURE TORSION

By Eng. Ahmed El sayed Salem Salama

A Thesis Submitted to The Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Mater Degree In Structural Engineering

Under the Supervision of

Prof. Dr. Magdy El Sayed Kassem	Prof. Dr. Ahmed Abd El Fattah
Professor of Reinforced Concrete	Professor of Reinforced Concrete
Head of concrete Research Laboratory	Head of Civil Eng. Department
Faculty of Engineering, Cairo University	Faculty of Engineering Shoubra, Benha
	University

Prof Dr Ahmed Abd El Eattah

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

BEHAVIOR OF FLANGED CONCRETE BEAMS WITH WEB OPENING UNDER PURE TORSION

By Eng. Ahmed El sayed Salem Salama

A Thesis Submitted to
The Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Mater Degree
In Structural Engineering

Approved by the Examining Committee

Prof. Dr. Mohey El dein S.Shokry, External Examiner Head of Civil Eng. Department Faculty of Engineering, Alexandria. University

Prof. Dr. Mohamed T. Mustafa, Internal Examiner Professor of Reinforced Concrete Structures Faculty of Engineering, Cairo University

Prof. Dr. Magdy E. Kassem, Thesis Main Advisor Head of concrete Research Laboratory Faculty of Engineering, Cairo University

Prof. Dr. Ahmed A. Mahmoud, Member Head of Civil Eng. Department Faculty of Engineering Shoubra, Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Acknowledgments

All gratitude is due to **ALLAH** who guided and aided me to bring forth to light this thesis.

I wish to thank my deepest gratitude to **Prof. Dr. Magdy E. Kassem** Head of concrete research laboratory ,professor of reinforced concrete, Faculty of Engineering, Cairo University, for his keen supervision, helpful guidance continuous interest, and valuable advice during execution and final preparation of this work.

My sincere thanks are also due to **Prof. Dr. Ahmed. A. Mahmoud** professor of reinforced concrete, Head of civil engineering department, Faculty of Engineering Shoubra, Benha University, for his valuable discussions, fruitful criticism, great interest in supervising this study, and powerful support in overcoming problems that faced thesis preparation.

Finally I would like to express my sincere appreciation to family, dad, my brothers for their encouragement and to all those who helped in the completion of this work in its final form.

Dedication

This thesis is dedicated to my mother.

For her endless love, support and encouragement

Table of Contents

ACKNOW	VLEDGMENTSERROR! BOOKMARK NOT DEF	INED.
DEDICAT	TION	II
TABLE O	F CONTENTS	III
LIST OF T	TABLES	VV
LIST OF I	F IGURES ERROR! BOOKMARK NOT DEFI	NED. I
NOMENC	CLATURE ERROR! BOOKMARK NOT DEF	INED.
	CTXERROR! BOOKMARK NOT DEF	
	R 1 : INTRODUCTION ERROR! BOOKMARK NOT DEF	
1.1.	INTRODUCTION	
1.2.	OBJECTIVE	2
1.3.	RESEARCH DESCRIPTION	
1.4.	ORGANIZATION OF THE THESIS	
	R 2 : LIETRATURE REVIEW	
	INTRODUCTION	
	OPENINGS IN RIENFORCED CONCRETE BEAMS	
2.2.1.	Openings Shapes, Locations and Dimensions	
	TORSIONAL STRENGHT OF RIENFORCED CONCRETE BEAM	
2.3.1.	Solid Beams	
2.3.1		
2.3.1	83	
2.3.1		
2.3.2.	Beams With Web Openings	
2.3.2 2.3.2	1 8	
	R 3 : EXPERIMENTAL PROGRAM	
	INTRODUCTION	
	TEST SAMPLES GEOMETRY AND Rienforcement	
	MATERIALS	
3.3.1.	Rienforced Concrete Materials	
3.3.2.	Steel Rienforcement	
	CONCRETE CASTING TOOLS	
3.5.	CASTING AND CURING	
3.6.	BEAMS TESTING TOOLS AND INSTURMENTATION	
	R 4 : EXPERIMENTAL RESULTS	
	INTRODUCTION	
	EFFECT OF FLANGE WIDTH (B)	
	EFFECT OF FLANGE THICKNESS (t.)	

4.4.	EFFECT OF OPENING HEIGHT (h _o)	51
4.5.	CRACKING TORQUE	51
4.5.1.	Effect of Flange Width (B)	51
4.5.2.	Effect of Flange Thickness (t _s)	52
4.5.3.	1 & & &	
4.6.	ULTIMATE TOURQUE	53
4.6.1.	· · · · · · · · · · · · · · · · · · ·	
4.6.2.	(3)	
4.6.3.	7 8 8 (3)	
4.7.	ULTIMATE BEHAVIOR AND CRACK PATTERN	56
CHAPTE	R 5: ANALATYICAL PROGRAM	
5.1.	INTRODUCTION	
5.2.	THE DEVELOPMENT OF USING TRUSS MODEL	63
5.3.	MODELS OF CONCRETE SOFTENING	65
5.3.1.		
5.3.2.	r	
5.4.	SPACE TRUSS MODEL THEORY	70
5.4.1.		
5.5.	NONLINEAR ANALYSIS FOR FLANGED CONCRETE BEAMS W	/ITH
	WEB OPENINGS UNDER PURE TORSION	78
5.6.	COMPARISION BETWEEN ANALATYICAL MODEL AND	
	EXPERIMENTAL RESULTS	80
5.7.	TORQUE – ROTATION RELATIONSHIP	80
CHAPTE	R 6 : PARAMETRIC STUDY	84
6.1.	INTRODUCTION	84
6.2.	OUTLINE OF PARAMETRIC STUDY	84
6.3.	RESULTS OF THE PARAMETRIC STUDY	87
6.4.	THE EFFECT OF CONCRETE COMPRESSIVE STRENGHT (f_{cu})	8
6.5.	THE EFFECT OF YIELD STRENGHT (f _v)	
6.6.	THE EFFECT OF BEAM WEB WIDTH (b)	
6.7.	THE EFFECT OF BEAM DEPTH (t)	
6.8.	THE EFFECT OF FLANGE THICKNESS (t _s)	
6.9.	THE EFFECT OF NUMBER OF STIRRUPS /m	
6.10.	THE EFFECT OF DAIMETER OF STIRRUPS	96
6.11.	THE EFFECT OF OPENING DEPTH (h _o)	
6.12.	THE EFFECT OF NUMBER OF OPENINGS	
6.13.	THE EFFECT OF LONGITUDINAL STEEL AREA (A _{sl})	
6.14.	THE EFFECT OF FLANGE WIDTH (B)	
	SION AND CONCLUSIONS	
	CES	

List of Tables

Table 3.1: Geometry and Reinforcement Details of Tested Beams	39
Table 3.2: The Mechanical Properties of Steel Reinforcement	
Table 4.1: Experimental Results	
Table 5.1: The Value of K1 Corresponds to β at Different Cases of Loading	
Table 6.1: Outline of Parametric study	
Table 6.2: The Results of the Parametric Study	

List of Figures

Figure 1.1a: Passing the Service Duct in the space underneath The Beam	1
Figure 1.1b: Passing the Service Duct through Web Opening in the Beams	1
Figure 2.1: Opening shapes	4
Figure 2.2: Opening vertical location	5
Figure 2.3: Failure Mechanisms	5
Figure 2.4: Modes of Failure	7
Figure 2.5 a: Proposed Failure Surface	8
Figure 2.5 b,c : The Composition of Force	9
Figure 2.5 d: Displacement of Longitudinal Bars under Twisting	9
Figure 2.6 a: Components of Space Truss	10
Figure 2.6 b: Forces in a Space Truss	11
Figure 2.7: Equilibrium of Forces at Joint C _{r+1}	11
Figure 2.8: Variable Angle Space Truss Model	13
Figure 2.9: Analysis of Forces in the Variable Angle Space Truss Model	14
Figure 2.10: Definitions of A _o , P _o and F _d in CEB – FIP model	15
Figure 2.11: Spalling of the concrete cover due to torsion	17
Figure 2.12: Effective Wall Thickness of a Twisted Beam	18
Figure 2.13a : Thin-Walled Tube	20
Figure 2.13b: Area Enclosed by Shear Flow Path	20
Figure 2.14: Portion of slab to be included with the beam	21
Figure 2.15a: Hollow section	23

Figure 2.15b: Solid section	23
Figure 2.16: Definition of A_{oh} (A_{oh} = shaded area)	24
Figure 2.17: Definition of A _{oh}	26
Figure 2.18: Effective flange width for torsion	26
Figure 2.19: Torsion stirrup and longitudinal reinforcement details	28
Figure 2.20: Assumed Failure Mechanism	34
Figure 3.1a : Plan of Tested Beams	37
Figure 3.1b: Elevation of Tested Beams	38
Figure 3.1c : Section elevation (A-A)	38
Figure 3.1d: Notations	38
Figure 3.2: Geometry and Reinforcement Details of The Control Beam (B1)	40
Figure 3.3: Geometry and Reinforcement Details of Group (1)	41
Figure 3.4: Geometry and Reinforcement Details of Group (2)	42
Figure 3.5: Geometry and Reinforcement Details of Group (3)	43
Figure 3.6: Compressive Strength of Concrete Test	44
Figure 3.7: Steel Reinforcement of Some Tested Beams	45
Figure 3.8a: Concrete Mixer	46
Figure 3.8b: Digital Scale	46
Figure 3.8c: Vibrator	46
Figure 3.8d: Foam Block	46
Figure 3.9: Curing of Concrete Cubes	47
Figure 3.10: Tested Beams after Casting	47
Figure 3.11a: LVDT Apparatus	48

Figure 3.11b: Specimen Setup	48
Figure 4.1: Effect of Flange Width (B)	50
Figure 4.2: Effect of Flange Thickness (t _s)	50
Figure 4.3: Effect of Opening Height (h ₀)	51
Figure 4.4: Cracking Torque for Beams with Different Flange Width	52
Figure 4.5: Cracking Torque for Beams with Different Flange Thickness	52
Figure 4.6: Cracking Torque for Beams with Different Opening Height	53
Figure 4.7: Ultimate Torque for Beams with Different Flange Width	54
Figure 4.8: Ultimate Torque for Beams with Different Flange Thickness	54
Figure 4.9: Ultimate Torque for Beams with Different Opening Height	55
Figure 4.10: Top Slab of B1	56
Figure 4.11: Face 1 of B1	56
Figure 4.12: Face 2of B1	56
Figure 4.13: Top Slab of B2	57
Figure 4.14: Face 1 of B2	57
Figure 4.15: Face 2 of B2	57
Figure 4.16: Top Slab of B3	58
Figure 4.17: Face 1 of B3	58
Figure 4.18: Face 2 of B3	58
Figure 4.19: Top Slab of B4	59
Figure 4.20: Face 1 of B4	59
Figure 4.21: Face 2 of B4	59
Figure 4.22: Top Slab of B5	60

Figure 4.23: Face 1 of B5	60
Figure 4.24: Face 2 of B5	60
Figure 4.25: Top Slab of B6	61
Figure 3.26: Face 1 of B6	61
Figure 4.27: Face 2 of B6	61
Figure 4.28: Top Slab of B7	62
Figure 4.29: Face 1 of B7	62
Figure 4.30: Face 2 of B7	62
Figure 5.1a: Stress-Strain Curve for Concrete Cylinder	64
Figure 5.1b: Stress-Strain Curve for Softened Concrete Diagonals	64
Figure 5.2a: Stress-Strain Curve Multiply by β Expressed in 1982	65
Figure 5.2b: Stress-Strain Curve Multiply by β Expressed in 1986	66
Figure 5.3: Vecchio and Collins Stress –Strain Curve for Softened Concrete	66
Figure 5.4: Non-dimensional zed Stress-Strain Curves for Softened Concrete	
According to Vecchio and Collins	68
Figure 5.5: The Idealized Cross Section for Torsion	70
Figure 5.6: The Components of the Space Truss Model	71
Figure 5.7: Defenation of A _o and P _o	72
Figure 5.8: Analysis of One Face of Space Truss.	73
Figure 5.9: The Forces in the Stirrups	74
Figure 5.10a: Stresses at Concrete Strut	76
Figure 5.10b: Cross-section X-X	76

Figure 5.10c: Strain distribution	76
Figure 5.10d: Stress distribution.	76
Figure 5.11: The Design Procedure for Nonlinear Analysis of Flanged Concrete Bea	ıms.
with Web Opening Subjected to Pure Torsion	79
Figure 5.12: The Comparison between Experimental and Analytical Results for	
the Control Beam (B1)	80
Figure 5.13: The Comparison between Experimental and Analytical Results for	
Beam (B2)	81
Figure 5.14: The Comparison between Experimental and Analytical Results for	
Beam (B3)	81
Figure 5.15: The Comparison between Experimental and Analytical Results	
Beam (B4)	82
Figure 5.16: The Comparison between Experimental and Analytical Results	
Beam (B5)	82
Figure 5.17: The Comparison between Experimental and Analytical Results	
Beam (B6)	83
Figure 6.1: The Effect of Concrete Compressive on Ultimate Torsional Strength	89
Figure 6.2: The Effect of Concrete Compressive on Ultimate Angle of Rotation	89
Figure 6.3: The Effect of Yield Stress on Ultimate Torsional Strength	90
Figure 6.4: The Effect of Yield Stress on Ultimate Angle of Rotation	90
Figure 6.5: The Effect of Beam Width on Ultimate Torsional Strength	91
Figure 6.6: The Effect of Beam Width on Ultimate Angle of Rotation	
Figure 6.7: The Effect of Beam Depth on Ultimate Torsional Strength	92

Figure 6.8: The Effect of Beam Depth on Ultimate Angle of Rotation93
Figure 6.9: The Effect of Flange Thickness on Ultimate Torsional Strength94
Figure 6.10: The Effect of Flange Thickness on Ultimate Angle of Rotation94
Figure 6.11: The Effect of Number of Stirrups/m on Ultimate Torsional Strength95
Figure 6.12: The Effect of Number of Stirrups/m on Ultimate Angle of Rotation95
Figure 6.13: The Effect of Diameter of Stirrups on Ultimate Torsional Strength96
Figure 6.14: The Effect of Diameter of Stirrups on Ultimate Angle of Rotation97
Figure 6.15: The Effect of Opening Depth on The Ultimate Torsional Strength98
Figure 6.16: The Effect of Opening Depth on The Ultimate Angle of Rotation98
Figure 6.17: The Effect of Number of Opening on Ultimate Torsional Strength99
Figure 6.18: The Effect of Number of Opening on Ultimate Angle of Rotation99
Figure 6.19: The Effect of Longitudinal Steel on the Ultimate Torsional Strength100
Figure 6.20: The Effect of Longitudinal Steel on the Ultimate Angle of Rotation100
Figure 6.21: The Effect of Flange Width on the Ultimate Torsional Strength102
Figure 6.22: The Effect of Flange Width on the Ultimate Angle of Rotation

Nomenclature

A_o: cross-sectional area bounded by the centerline of the shear flow path. A_{oh}: the area enclosed by the centerline of the hoop. At: cross-sectional area of one leg of closed stirrups. $\overline{A_1}$: cross-sectional area of longitudinal bars within the shear-compression zone = 1/2 total longitudinal steel of four corner bars. A₁: is area enclosed by centroids of corner longitudinal steel in chord member. A_{cp} : the area bounded by the outer perimeter of concrete cross section. a: depth of stress block. b_o: length of opening. E_s: the young's modulus of elasticity. E_c : the modulus of Elasticity of concrete. f_{sy} : yield strength of stirrups. f_{ly} : yield strength of longitudinal bars. f_{Ly} : the yield stress of the longitudinal reinforcement. F_{ty} : the yield stress of the stirrups. f_t:stress in stirrups.