NEURO-PHYSIOLOGICAL STUDY OF HIGHER AUDITORY FUNCTIONS IN CHILDREN HAVING SPECIFIC LANGUAGE IMPAIRMENT

Thesis submitted for

fulfillment of M.D. degree in the Phoniatrics by

Asmaa Ahmed Abdel-Hamid

MBBCh- Msc.in Phoniatrics

Under supervision of

Prof. Dr. / Mahmoud Abdel-Raouf

Professor of E.N.T

Faculty of Medicine

Cairo University

Prof. Dr. / Shereen M. Al-Abd

Professor of Audiology

Faculty of Medicine

Cairo University

Dr. / Sahar Saad Shohdi

Dr. / Elham Ahmed Shahin

Assistant Professor of Phoniatrics

Assistant Professor of Phoniatrics

Faculty of Medicine

Faculty of Medicine

Cairo University

Cairo University

2010

بسم الله الرحمن الرحيم

قالوا سبحانك لا علم لنا إلا ما علمتنا انك أنت العليم الحكيم

صدق الله العظيم

سورة البقرة الاية ٣٢

To my family in appreciation for their continuous support

Abstract

There is much controversy about the extent to which auditory processing deficits are important in the genesis of language disorders, paryicularly specific language impairment (SLI). This studys objective was to provide diagnostic correlates of language assessment, psychlinguistic abilities, ABR and p300 responses in children. The study was carried out on 40 children with specific language impairment and 20 controls. They were all subjected to the language test, Illinois psycholinguistic test with its 7 auditory items as well as an audiological assessment that included ABR and P300 recordings. There was a highly significant statistical difference in p300 amplitude and latency as well as ABR latencies between patients and controls. There were also strong correlations between P300 results and most of tests under study.

Key words: Illinois test, P300, ABR, SLI.

Acknowledgement

First and for most, thanks to **ALLAH**, the most gracious, the most merciful.

I wish to express my sincere gratitude and deep appreciation to **Prof. Dr. / Mahmoud Abdel-Raouf.** Professor of ENT Faculty of Medicine.

Cairo University, for honoring me with his supervision. He did not spare any time and effort in assisting me to complete this work..

I would like to express my deepest thanks to **Dr. / Shereen M. Al-Abd** Professor of audiology, Faculty of Medicine, Cairo University, for her continuous help and valuable advice.

I can not find the words to express my deepest thanks and sincere appreciation to **Dr.** / **Sahar Saad Shohdi** Assistant Professor of Phoniatrics, Faculty of Medicine, Cairo University,.& **Dr.** / **Elham Ahmed Shahin** Assistant Professor of Phoniatrics, Faculty of Medicine Cairo University, for their great help, support, unlimited effort and time they gave me during this work.

Asmaa Ahmed Abdel-Hamid
2010

LIST OF CONTENTS

CONTENTS	PAGE
Introduction	1
Aim of the work	5
Review of literature	
Chapter1: SLI	6
Chapter 2: Electrophysiological indices of central	23
auditory processing.	
Chapter 3: Central auditory processing in children	38
with SLI	
Chapter 4: Rehabilitation of SLI with central auditory	58
processing disorder.	
Materials & methods	73
Results	90
Discussion	154
Conclusions	178
Recommendations	180
Summary	181
References	185
Arabic summary	217

LIST OF TABLES

TABLE NO	TITLE	page
TABLE (1)	Comparison of mean of Chronological	93
	age between Control Group and children	
	with SLI.	
TABLE (2)	Comparison of mean of auditory	94
	parameters, between Control Group and	
	children with SLI.	
TABLE (3)	Comparison of mean of Illinois	106
	subtests, between Control Group and	
	children with SLI.	
TABLE (4)	Correlation between P300 latency and	118
	different ages of language test among	
	SLI children.	
TABLE (5)	Correlation between P300 latency and	119
	different ages of Illinois subtests	
	among SLI children.	
TABLE (6)	Correlation between P300 latency and	120
	different ages of Illinois subtests	
	among control children.	
TABLE (7)	Correlation between P300 latency and	121
	different parameters among SLI	
	children.	
	Correlation between P300 amplitude	
TABLE (8)	and different ages of language test	131
	among SLI children.	

TABLE (9)	Correlation between P300 amplitude and different ages of Illinois subtests among SLI children.	132
TABLE (10)	Correlation between P300 amplitude	133
	and different ages of Illinois subtests	
	among control children.	
TABLE (11)	Correlation between P300 amplitude	134
	and different audi parameters among	
	SLI children	
TABLE (12)	Correlation between Chronological	139
	age and subtests of Illinois among	
	cases under study	
TABLE (13)	Correlation between receptive age and	144
1110000 (13)	subtests of Illinois among cases under	
	study	
	study	
TABLE (14)	Correlation between expressive age	148
	and subtests of Illinois among cases	
	under study	
TABLE (15)	Correlation between Language age	153
	and subtests of Illinois among cases	
	under study	
	•	
l		

LIST OF FIGURES

Figure NO	Title	page
Figure (1)	Potential limitations in receptive language	14
	processing in children with specific	
	language impairment (SLI).	
Figure (2)	Potential limitations in speech	15
	production in specific language	
	impairment (SLI).	
Figure (3)	Auditory passive paradigms in a 5-	21
	year-old boy with SLI and a 5-year-old	
	normal boy.	
Figure (4)	Average activation recorded by fMRI	22
rigure (4)		22
	during a word-generation task in	
	normal subjects and in subjects with	
	SLI.	
Figure (5)	The auditory pathway.	24
Figure (6)	Normal ABR response	29
Figure (7)	Simple odd hell paradigm	33
Figure (7)	Simple odd ball paradigm.	33
Figure (8)	Cortical auditory potentials.	36
8 ()		
Figure (9)	P300 in attending and ignoring states.	37
Figure (10)	Grand average auditory ERPs for tones and	52
	syllables for SLI and control groups at nine	
	electrodes	

Figure (11)	The graphic representation of the conceptual	68
	framework adopted by the ICF.	
Figure (12)	Event related potential instrument	89
Figure (13)	Sex distribution among cases and controls under study.	92
Figure (14)	Comparison of chronological age between cases and controls under study.	94
Figure (15)	Comparison of P300 amplitude between cases and controls under study.	99
Figure (16)	Comparison of P300 latency between cases and controls under study	100
Figure (17)	Comparison of ABR III latency between cases and controls under study	101
Figure (18)	Comparison of speech discrimination between cases and controls under study	102
Figure (19)	Comparison of auditory reception between cases and controls under study	107
Figure (20)	Comparison of auditory association between cases and controls under study	108
Figure (21)	Comparison of verbal expression between cases and controls under study	109

Figure (22)	Comparison of grammatic closure between	110
	cases and controls under study	
Figure (23)	comparison of auditory sequential memory	111
	between cases and controls under study.	
Figure (24)	comparison of auditory closure between	112
	cases and controls under study	
Figure (25)	Comparison sound blending between cases	113
	and controls under study	
Figure (26)	Correlation between P300 latency and	122
	auditory association among cases	
Figure (27)	Correlation between P300 latency and	123
	verbal expression among cases	
Figure (28)	Correlation between P300 latency and	124
	speech discrimination among cases	
Figure (29)	Correlation between P300 amplitude and	125
	auditory association among cases	
Figure (30)	Correlation between P300 amplitude and	126
	verbal expression among cases	
Figure (31)	Correlation between chronological age and	135
	verbal expression among cases.	

Figure (32)	Correlation between expressive age and 136	6
	verbal expression among cases	
Figure (33)	Correlation between chronological age and 140	0
	auditory reception among cases.	
E: (24)	Correlation between expressive age and 141	1
Figure (34)	Confedence of Confedence age and	1
	auditory reception among cases	
Figure (35)	Correlation between receptive age and 145	5
	auditory reception among cases	
Figure (36)	Correlation between P300 latency 149	9
	andauditory sequential memory among	
	controls.	
	COHITOIS.	
		0
Figure (37)	Correlation between P300 latency and 150	U
	grammatic closure among controls.	

LIST OF ABBREVIATIONS

SLI: Specific language impairment

ADHD: Attention deficiency hyperactivity disorder

BM: Backward masking

ERP: Event related potential

ITPA: Illinoi's test of psycholinguistic abilities

WISC-R: Wechsler Intelligence Scale for Children Revised

SRT: Speech reception threshold

MMN: Mismatch negativity

Hz: Hertz

S/N: Signal to noise ratio

FFW: The Fast ForWord – Language program

EEG: Electroencephalographic

ART: Auditory Repetition Test

ICC: Intra-class correlation coefficients

CV: Consonant–vowels

TLD: Typical language development

PN: Processing negativity.

ICD-10: The International Classification of Diseases-10.

DSM-IV: Diagnostic and Statistical Manual of Mental Disorders

G-SLI: Grammatic Specific language impairment.

mv: millivolt.

msec: millisecond.

SD: Standard deviation.

FM: Frequency modulators.

ICF: International Classification of Functioning, Disability and

Health

TIME CONTRACTOR