Power Modulation in Phacoemulsification

Essay

Submitted for partial fulfillment of master degree in ophthalmology

BY

Liza Hemaid Sayed Awwad

(M.B., B.Ch.)

Faculty of medicine - Cairo University

Supervised by:

Professor Doctor: Ali Hassan Saad

Professor of ophthalmology Faculty of Medicine - Ain Shams University

Doctor: Mohamed Omar Yousif

Lecturer of ophthalmology
Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain-Shams University
Cairo
Egypt
2015

تعديل القوة المستخدمة في تفتيت المياه البيضاء بالموجات فوق الصوتية

بحث

مقدم تمهيدا للحصول على درجة الماجستير في طب وجراحة العيون

من

ليزا حميد سيد

بكالوريوس الطب و الجراحة كلية الطب- جامعة القاهرة

تحت اشراف

الأستاذ الدكتور/ علي حسن سعد

أستاذ طب وجراحة العيون كلية الطب - جامعة عين شمس

الدكتور/ محمد عمر يوسف

مدرس طب وجراحة العيون كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس 2015

"قُلْ هُوَ الَّذِي أَنشَاًكُمْ وَجَعَلَ لَكُمُ السَّمْعَ وَالْأَبْصَارَ وَالْأَفْتِدَةَ قَلِيلاً مَّا تَشْكُرُونَ أَنا"

(سورة الملك)

Acknowledgement

Let me start by giving all glory to God Almighty for his enduring mercy, faithfulness, guidance and blessing that made this research effort possible.

My sincere appreciation goes to Professor Doctor Ali Hassan Saad who guided and supervised me, his guidance supervision and intellectual wealth in greater way enriched my knowledge and perception of the subject matter. I am deeply indebted to Doctor Mohamed Omar Yousif, I acknowledge his tireless support, meticulous guidance, kind gestures and positive criticism have enriched my knowledge, experience and the structuring of the material content. My appreciation also goes to my esteemed colleagues and all others I may have not mentioned in person, for their valuable contributions and support.

Lastly but not the least, I take pride of being a part of my dear family, I acknowledge with gratitude their spiritual and other kind of supports kept me focused throughout the course, I have always enjoyed the wonderful love, understanding and patience of my great parents.

List of Abbreviations

CME	Cystoid Macular Edema
CZ	Central Zone
GZ	Germinative Zone
HPMC	HydroxyPropyl MethylCellulose
HZ	Hertz
IOL	Intraocular Lens
LOCS	The Lens Opacity Classification System
NSAID	Non-Steroidal Anti-Inflammatory Drugs
OVDs	Ophthalmic Viscosurgical Devices
PCO	Posterior Capsule Opacification
PGZ	Pregerminative Zone
RD	Retinal Detachment
TZ	Transitional Zone

INDEX

Title	Page
List of figures	I
Introduction	1
Aim of the work	4
Chapter 1: The Anatomy and Embryology of the	5
Lens	
Chapter 2: Cataract: Etiology, Classifications and	16
Symptoms	
Chapter 3: Phacoemulsification Surgery	27
Chapter 4: Phacoemulsification Machine Dynamics	41
Chapter 5: Power Modulation in	51
Phacoemulsification	
Summary	93
References	99

List of Figures

	Figure	Page	
Fig. 1	Schematic diagrams of key structural events in	10	
	lens development	10	
Fig. 2	Schematic diagram showing secondary fiber	14	
	development or lens growth at selected stages		
Fig. 3	Schematic diagram showing fetal fibers		
	arrangement in age-defined growth shells and	15	
	radial cell columns		
Fig. 4	Lens Opacities Classification System III		
Fig. 5	Phacoemulsification Surgery Steps		
Fig. 6	Iris prolapsed: Iris tissue may prolapse through	36	
	the Phaco surgical		
Fig. 7	B-Scan for the Retinal Detachment		
Fig. 8	Cystoid Macular Edema		
Fig. 9	Peristaltic Pump		
Fig. 10	Venturi Pump System		
Fig. 11	The phaco tip and the cracking instrument in	55	
	Divide and Conquer technique		
Fig. 12	Cracking the lens in divide and conquer	55	
	technique		
Fig. 13	Horizontal Chopping	59	

Fig. 14	Vertical Chopping	59
Fig. 15	Full spectrum of Opthalmic viscosurgical devices	62
Fig. 16	Continues Mode in Phaco	70
Fig. 17	Pulse Mode in Phaco	70
Fig. 18	Comparison between Pulse and continues	70
Fig. 19	Basic types of power modulation	72
Fig. 20	Programming an endpoint for burst mode to 50 % duty cycle	73
Fig. 21	NeoSoniX™ Hand Piece	82
Fig. 22	OZil Intelligent Phaco	84

INTRODUCTION

In 1967, Charles Kelman started clinical trials of phacoemulsification after nearly three years of research, and began teaching the method to other ophthalmologists in 1969. Even in those days, he was insistent that surgeons knew how to set up the machine before being allowed to use it and had to practice many times on plastic eyes and animal before proceeding to human cases. (*Benjamin*, 2007)

Phacoemulsification is the removal of a cataractous lens using ultrasonic energy via small incision. (*Benjamin*, 2007)

Early patient rehabilitation and excellent long term visual outcome have made phacoemulsification much preferred technique of cataract extraction today. Rapid strides in ophthalmology and surgical techniques have made the procedure safe and comfortable for the patient. (*Grover and Popli*, 2003).

Phacoemulsification cataract surgery requires the use of complex phaco machines. Understanding the mechanical principles underlying this technology allows the surgeon to optimize machine settings and safely trouble shoot problems encountered during surgery. (*Shugarman*, 2013).

All Eye Surgeons, Regardless of level of surgical expertise, will benefit from reviewing the fundamentals of phacoemulsification, including fluidics and ultrasound power modulation. The accomplished surgeon can improve the safety and efficiency of their techniques and the novice surgeon will have a distinct advantage to mastering these skills. (*Shugarman*, 2013).

During the eighties and nineties, ophthalmologists have become increasingly convinced that the amount of phaco energy delivered in an eye directly affects corneal endothelial cells and in some cases, causes corneal decompensation and compromised vision. Technological advances and surgical techniques aimed at minimizing the iatrogenic effects of phaco energy have evolved rapidly but surgeons today are faced with an even bigger challenge. (*Devgan*, 2004)

Power modulations were developed in the late 1980s and early 1990s and resulted in a modification in the delivery of phaco power, going from the delivery of continuous phacoemulsification to allowing milliseconds of rest between milliseconds of ultrasound activity .(Fine et al, 2004)

Many modulations in the delivery of power are now available. With these modulations, significantly less total

ultrasound energy is delivered into the eye. In addition, some new systems provide occlusion mode phacoemulsification, allowing for different parameters of percentage power, vacuum levels, and aspiration flow rate on tip occlusion compared to an unoccluded tip. (Fine et al, 2001)

AIM OF THE STUDY

To review the literature on the power modulation of phacoemulsification and to evaluate different techniques needed to decrease the energy used, to shorten phaco time and to improve efficiency, So as to improve the outcome of phacoemulsification with minimal eye injury.

Chapter One

THE ANATOMY AND EMBRYOLOGY OF THE LENS

The Lens Definitions:

Lens, in anatomy, a nearly transparent biconvex structure suspended behind the iris of the eye, the sole function of which is to focus light rays onto the retina. The lens is made up of unusual elongated cells that have no blood supply but obtain nutrients from the surrounding fluids, mainly the aqueous humour that bathes the front of the lens. Waste products are removed through these fluids as well.

The cornea and the lens are the principal refractive elements of the eye. They are responsible for, respectively, stationary and variable refraction. However, although both must be transparent to function properly, the basis of their transparency is different. Lens transparency is the result of a unique arrangement of its fiberlike cells, or fibers, and a gradient of refractive index produced by a variable crystalline protein concentration within these fibers. In fact, alterations in lens morphology affected during specific periods of development and growth, lead to quantifiable improvements in lens optical quality. Thus, the human lens is a prime example of form following function and malformation leading to malfunction. (*Kuszak and Costello*, 2006)

In this chapter we will describe lens anatomy, development and Embryology; this is considered a crucial step to achieve a clear understanding of the Cataract (chapter two) and therefore figuring out the Phacoemulsification concepts and the cataract surgery.

The Lens Anatomy

The Lens Structure: The lens consists of:

1. The lens capsule: The capsule completely envelops the lens and the cells of origin are completely contained in it. The capsule is the basement membrane of the lens epithelium and is the thickest basement membrane of the body. It is much thicker in front than behind and the anterior and posterior portions are thicker towards the periphery (equator) just within the attachment of the suspensory ligament than at the poles. The thickness at the posterior pole is 2.8- 4 µm and at anterior pole is 15.5 µm. Capsule thickness increases anteriorly with age but there is little change at the posterior pole. Under the light microscope the capsule appears transparent, homogenous and under polarized light, birefringent with an indication of a lamellar structure with fibers arranged parallel to its surface. Under electron microscope, the capsule appears to have a relatively amorphous appearance. There are up to 40 lamellae, each of which is 40nm thick. (American Academy of Ophthalmology, 2011)