

Department of Architecture Faculty of Engineering Ain Shams University

SUSTAINABLE LANDSCAPE IN UNIVERSITY CAMPUS URBAN DESIGN

By

Ahmed Ibrahim Amr

B.Sc. Architecture, Ain Shams University, 2010

A thesis Submitted to the Faculty of Engineering in Partial Fulfillment of requirements for the degree of

Master of Science in Architecture

Supervised by

Prof.

Shaimaa Kamel

Professor of Architecture
Department of Architecture
Faculty of Engineering
Ain Shams University

Prof.

Germin El Gohary

Professor of Landscape
Department of
Urban Design and Planning
Faculty of Engineering
Ain Shams University

Prof.

Johannes Hamhaber

Professor of Urban and Regional
Management
ITT
Cologne University of Applied
Sciences

Ain Shams University CAIRO, EGYPT

2015

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master in Architecture. The work included in this thesis was accomplished by the author at the Department of Architecture, Faculty of Engineering; Ain shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Date: / /2015

Signature:

Name: Ahmed Ibrahim Amr

Faculty: Faculty of Engineering – Ain Shams University

BOARD OF EXAMINERS

Examiner	Signature
Prof. Ayman Hassaan Mahmoud	
Professor of Landscape	
Faculty of Engineering	
Cairo University	
A. Prof. Ahmed Atef Faggal	
Associate Professor of Architecture	
Faculty of Engineering	
Ain Shams University	
Prof. Shaimaa Mohamed Kamel	
Professor of Architecture	
Faculty of Engineering	
Ain Shams University	
Prof. Germin Farouk El Gohary	
Professor of Landscape	
Faculty of Engineering	
Ain Shams University	

ACKNOWLEDGEMENTS

First of all, I would like to thank God for his generosity, blessings and giving me power, health and patience to finish this piece of work. May He always guide me to help my country and widen my knowledge to serve humanity and Islam.

Second, this thesis is a tiny thank you to my mother Iman El Soufy, father Ibrahim Amr and brother Tarek Amr who always support me and are my backbone in everything. Nothing could be enough to show my respect, gratitude and endless love.

My deepest appreciation and thanks to my dearest supervisors. Words aren't enough to thank you for your great support and limitless help.

Thank you to Prof. Shaimaa Kamel, Prof. Gemin El Gohary and Prof. Johannes Hamhaber

Special thanks to my dear and supportive friends who always helped and really cared: Arch. Reem Fahmy, Dr. Marwa Abd El Latif, Arch. Merham Kelg.

I sincerely appreciate the help of Prof. Ahmed Sherif, Prof. Laila El Marsy, Prof. Maher Stino, Dr. Ahmed Amin, Prof. Tamer El Khorazaty, Prof. Hanan Sabry, Dr. Ahmed Rashed, Dr. Gehan Nagy, Dr. Samah El Khateeb, Eng. Tawheid (AUC), Eng. Aly (BUE), Arch. Mohamed Abeedo, Arch. Manar Mohamed, Arch. Mariam Ahmed and Arch. Sameh Ibrahim.

Thank you to my dear doctors who have great input in my knowledge and intellectual exposure Dr. Marwa Khalifa and Prof. Mohamed Salheen.

UPD staff, you are my second family that I am honored to be part of.

All members of ITT, Fachochschule Köln, I am so grateful for your company and support during my stay in Köln, Germany.

My friends and family, you are one of the pillars of my life. Thank you to: Mohamed Mamdouh, Ahmed Hany, Abdallah Salah, Abdallah Raouf, Akram Sherif, Moatasem Ziad, Mohamed Reda, Hatem Ahmed, Amira Nabil, Samar El Moatasem, Alaa Ehab, Sara El Ansary, Omneya El Mogy, Sara Abd El Baki, Mohamed Zayed and Simon Witti. To my dear uncle, and my favorite writer Mohamed Amr, thank you for the final review of the thesis.

ABSTRACT

This thesis aims to reach a set of comprehensive guidelines and checklist for sustainable landscape measures in university campuses. The study managed to examine the state of campus landscape in some of the contemporary universities in Egypt and check the application of sustainability regarding campus landscape.

The thesis is based on four qualities affecting sustainable landscape. The qualities are: Physical qualities, ecological qualities, individual use qualities and social qualities. The integration of these qualities covers two pillars of sustainability which are environmental and social sustainability. The two first qualities target how physical urban properties could function efficiently performing the required benefit and at the same time serving and protecting the ecosystem. The last two qualities focus on another factor which is the user.

The first four chapters included theoretical data from literature, reports and best practices clarifying the application of sustainable measures in landscape and its reflection on the university campus landscape. Physical qualities included: Connectivity, edges and gateways, different circulations on campus, spaces and facilities provided. This aspect focused on the efficient operation of campus and how to reach optimum cases related to urban design. Ecological qualities included: Water, vegetation, soil and materials. This aspect focused on less consumption of resources and energy, enhancing and protecting nature and returning back to nature resemblance. The individual use qualities included: Wayfinding, safety and identity. Individual use qualities discussed ease of movement, interaction and sense of belonging of users. The social qualities included: friendship formation, group membership, communications, spatial separation based on social characteristics, gender differences, participation and the impact of physical space on social space.

The methods used are deductive in the theoretical part reaching compilation of different elements to be added on the guidelines' checklist. Some relevant points from "SITES" rating system for sustainable sites were added to the list. The process of validating the list according to the guidance of expertise in the field of landscape architecture occurred. Questionnaires and interviews' questions were formulated to use for the selected case studies based on theoretical part. A cross- cutting relational table was generated to highlight the interactions between different qualities complying with the main target of sustainability creating a holistic and integrated approach.

The selection of the three cases -American University in Cairo (AUC), German University in Cairo (GUC) and British University in Egypt (BUE) - was based on recently opened campuses that could be more manageable and updated to

apply the measures of sustainable landscape. The three campuses are of different sizes sharing the desert common environment. Cases were analyzed according the checklist by visiting the cases and discussing points with units responsible for landscape management on campus. Questionnaires were distributed online and interviews were conducted to understand further relations on campus from different users.

According to the studied cases, the sustainability of landscape is still only achieved in limited fields especially the ecological qualities. Physical elements are mostly fine due to the good design of campuses especially the AUC. Even though AUC was the only campus of the three cases having actual steps towards the implementation of sustainable measures before construction and during operation, many aspects are still not achieved. Many elements need to be taken into consideration before construction as water systems, vegetation and soil. The main motive is the economic benefit in most cases while the ecological benefit is not obvious. The study resulted in a comprehensive comparison highlighting the main applied measures and main defects, a cross-cutting relational table for each case showing the integration between qualities positively and negatively, and the classification of the compiled checklist showing the degree of application.

TABLE OF CONTENTS

STATEMENT	1
BOARD OF EXAMINERS	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	vi
LIST OF FIGURES	xi
LIST OF TABLES	xix
LIST OF ACRONYMS	xxi
Introduction	xxii
Overview	xxv
Research problem	xxx
Research Hypothesis	xxx
Research objectives	xxxi
Research scope and limitations	xxxi
Research Methodology	xxxv
Research Structure	xxxix
Previous Theses	xli
PART 1 THEORETICAL PART	1
Chapter 1: Physical Qualities of Sustainable Campus La	indscape . 3
1.1 Introduction	5
1.2 Connectivity and permeability of Campus Landscape:	5
1.3 Campus edges and gateways	10
1.4 Different circulations on the university campus	10
1.4.1 Criteria for efficient circulation systems and their in	iteraction .15
1.5 Spaces	18

1.6 Uti	lities, services and amenities on campus	22
1.6.1	Buses and taxis	22
1.6.2	Parking	23
1.6.3	Street furniture	24
1.6.4	Lighting	25
1.7 Co	nclusion	26
1.7.1	Cross-cutting relations of physical aspects with other a	spects .27
Chapter 2	: Ecological Qualities of Sustainable Campus	
Landscape	e	29
2.1 Intr	oduction	31
2.2 Wa	ter	33
2.2.1	Storm water management	35
2.2.2	Water conservation	57
2.2.3	Water reuse and water recycling	58
2.2.4	Water storage	60
2.2.5	Irrigation	60
2.3 Veg	getation	64
2.3.1	Relevance to the site	64
2.3.2	Vegetation providing ecological qualities	67
2.3.3	Vegetation protection techniques	70
2.3.4	Sustainable planting design and management	71
2.3.5	Salvaged and reused vegetation	76
2.3.6	Special vegetation uses	76
2.4 Soi	1	82
2.4.1	Soil in site assessment	83
2.4.2	Soil composition, characteristics and layers	86
2.4.3	Characteristics of soil	89
2.4.4	Modification of soils	06

2.5 Ma	nterials	102
2.5.1	Lifecycle of construction materials	103
2.5.2	Impact of materials	105
2.5.3	Materials' assessment	108
2.5.4	Different materials	112
2.6 Co	nclusion	116
2.6.1 qualiti	Cross-cutting relation between ecological qualities and	
_	: Individual Use Qualities of Sustainable Campu	
-	roduction	
	gibility and Wayfinding	
3.2.1	Way finding strategies	
3.2.2	Process of design	
3.2.3	Some criteria for the way finding signs and designs	128
3.2.4	Sustainability linked to wayfinding	129
3.3 Sa	fety	130
3.3.1	Safety through design criteria	130
3.3.2	Safety through individual perception	131
3.4 Te	rritoriality and identity	133
3.4.1	Placemaking by buildings and building elements	134
3.4.2	Landmarks of landscape elements	138
3.4.3	Style as a factor of place making	139
3.5 Ae	sthetics on campus	140
3.5.1	Visual Character	142
3.6 Co	nclusion	142
Chapter 4	: Social Qualities on Sustainable Campus Lands	cape .145
4.1 Int	roduction	149
Differ	ent types of social interaction	152

4.	.2	Friendship formation	152
	4.2	2.1 Some criteria for friendship formation in open areas and lkways	153
		Group membership	
	. <i>3</i> 4.3		
4.		Communications	
		Identity and territoriality as a social quality	
4.		Different Social Distances	
	.7	Spatial separation due to social characteristics	
4.	.8	Gender differences affecting social quality	
4.	.9	Public participation and its impact	160
		The relation between physical spaces and social interactions	
4.	.11	Conclusion	163
		Generation of basic checklist, questionnaire and questions for	
in	iter	views	163
4.	.13	Cross cutting relations between 4 studied qualities	164
PAR	RT	2 EMPIRICAL PART	147
Cha	pte	er 5: Case Studies: American University in Cairo, Germa	n
Univ	ver	sity in Cairo & British University in Egypt	149
5.	.1	Introduction	169
5.	.2	British University in Egypt (BUE) Fig. 67	169
	5.2	2.1 Physical qualities on campus	171
	5.2	2.2 Ecological qualities on campus	178
	5.2	2.3 Individual use qualities on campus	182
	5.2	2.4 Social qualities on campus	186
	5.2	2.5 Conclusion for BUE campus	188
	5.2		
5.	.3	German University in Cairo (GUC) Fig. 98	191
	5.3	3.1 Physical qualities on campus	192

5.3.2	Ecological qualities on campus	199
5.3.3	Individual qualities on campus	202
5.3.4	Social qualities on campus	206
5.3.5	Conclusion for GUC campus	209
5.3.6	Cross-cutting relations for GUC campus	210
5.4 Th	e American University in Cairo (AUC)	213
5.4.1	Physical qualities on campus	214
5.4.2	Ecological qualities on campus	226
5.4.3	Individual qualities on campus	231
5.4.4	Social qualities on campus	235
5.4.5	Conclusion for AUC campus	238
5.4.6	Cross-cutting relations for AUC campus	239
5.5 Co	mparative analysis of the three case studies	243
5.5.1	Schematic percentages according to checklist	243
5.5.2	Comparison of the three campuses	246
Conclusio	ns and Recommendations	255
Classifie	ed checklist	257
Conclus	ions	278
Recomm	nendations	281
Further R	esearch	282
Reference	S	283
Appendic	es	292
Appendi	ix A (Interviews)	294
Appendi	ix B (Questionnaire)	298

LIST OF FIGURES

Fig. 1 Different aspects of sustainability covered through the researchxxxii
Fig. 2 Exclusion of economical aspectxxxiii
Fig. 3 Structure showing the theoretical and the application partsxl
Fig. 4 Clarification of different connectivity definitions (Tresidder, 2005)7
Fig. 5 Bochum University Campus (Dober, 2000, p. 108)13
Fig. 6 College of San Mateo (Dober, 2000, p. 109)
Fig. 7 University of Guelph (Dober, 2000, p. 110)
Fig. 8 Typical Campus Street Layout at a Crosswalk in UNB Fredericton Campus. UNB Fredericton Campus Plan P.79
Fig. 9 Typical Campus Street Section at a Crosswalk in UNB Fredericton Campus. UNB Fredericton Campus Plan P.79
Fig. 10 Different types of space organization (Dober, 2000, p. 162)19
Fig. 11 The comparison between the concentrated flow of water and the dispersed one (Calkins, 2012 kindle version)
Fig. 12 Diagrammatic layout showing the introduction of stormwater management techniques on Princeton University Campus
Fig. 13 Green roofs of dormitories of Princeton University, photo by Brian Wilson
Fig. 14 The construction board of the project of the bioretention in Missouri (University of Missouri Campus Facilities, 2013)
Fig. 15 The final steps of the bioretention project in University of Missouri (University of Missouri Campus Facilities, 2013)
Fig. 16 The small yellow signs at Pierce County Environmental Services, Tacoma, are an excellent example of creating fun education opportunities that lead visitors through the design from one treatment system to another (Calkins, 2012 kindle version, p. 2585)
Fig. 17 Signs with names and characteristics of used vegetative species (Carol R. Johnson Assosciates, 2012)
Fig. 18 The scale and accessibility of the storm water design at the Oregon Convention Center, Portland, OR, is an excellent example or recreation opportunities (Calkins, 2012 kindle version, p. 2602)

Fig. 19 The recirculating rain water system at Tanner Springs Park in Portland, OR, is an excellent of water that is safe and touchable because of the small shallow design (Calkins, 2012 kindle version, p. 2633)
Fig. 20 The signage that accompanies the porous paving and bioretention at High Point Housing, Seattle, WA, is an excellent example of public relations opportunities (Calkins, 2012 kindle version, p. 2666)
Fig. 21 The Courtyard in 10th@Hoyt, Portland, OR, is an excellent of aesthetic richness opportunities as the rain trail is captivating and easy to follow. (Calkins, 2012 kindle version, p. 2698)
Fig. 22 A side view of the Horticulture Services Building (Macdonald Campus, Sainte-Anne-de-Bellevue, QC, Canada) (Adamowski, 2014)
Fig. 23 Different designs of porous pavements (Mackzulak, 2010, p. 152)50
Fig. 24 Photo showing the parking lot with permeable pavement (McNally, Joubert, & Philo, 2003)51
Fig. 25 Rain garden on the University of Seattle Campus (Seattle University Campus, 2014)
Fig. 26 Green roof vegetation (Calkins, 2012 kindle version, p. 2956)53
Fig. 27 Diagram showing the composition of intensive and extensive green roofs (Calkins, 2012 kindle version, p. 2947)54
Fig. 28 Photo of Doherty Hall and Gates Center green roofs courtesy of Brad Temkin, 2011 (Carnegie Mellon University, 2014)
Fig. 29 Typical vegetated swale (Adapted from Portland BES Manual; Drawn by Simon Bussiere) (Calkins, 2012 kindle version, p. 3224)56
Fig. 30 Typical bioswale with micropools section (Adapted from Maryland Stormwater Design Manual, drawn by Simon Bussiere) (Calkins, 2012 kindle version, p. 3273)
Fig. 31 Two methods of using bioswales in parking lots on the University of Regina Campus (DIALOG, 2011, p. 69)
Fig. 32 Vegetation used for wind breaking and for breeze directing (Calkins, 2012 kindle version, p. 4851)
Fig. 33 The role of deciduous trees between summer and winter (Calkins, 2012 kindle version, p. 4865)

Fig. 34 Santa Fe Community College , source: http://www.panoramio.com/photo/2761215173
Fig. 35 Santa Fe Community College School of Arts and Design, source: http://www.panoramio.com/photo/27612180
Fig. 36 Native meadows used instead of lawn
Fig. 37 Kudzu plant, an invasive species
Fig. 38 The food garden in Gary Comer Youth Center in Chicago encouraging youth to produce their sustainable food on site, designed by Hoerr Schaudt Landscape Architects, photo from Scott Shigley (Calkins, 2012 kindle version, p. 5467)
Fig. 39 The master plan of Shenyang Architectural University Campus highlighting the zone for growing rice (Turenscape, 2014)
Fig. 40 An overview of the rice fields
Fig. 41 The process of planting the rice80
Fig. 42 Reading areas within the rice fields
Fig. 43 Different ecological processes supported by soil (Calkins, 2012 kindle version, p. 5818)
Fig. 44 A section in excavated agricultural soil showing the disturbed soil (Calkins, 2012 kindle version, p. 5905)
Fig. 45 Soil texture by feel method, Adapted by Colorado State. Source: (Roadside Revegetation, 2014)90
Fig. 46 Two diagrams showing different aggregate stability of soil92
Fig. 47 A sample for used Soil Textural Triangle indicating maximum bulk densities (Calkins, 2012 kindle version, p. 6520)
Fig. 48 Installing vegetation through structural soil on site (Calkins, 2012 kindle version, p. 7358)
Fig. 49 A: shows an opened unsustainable system while B: shows a closed more sustainable one (Benson & Roe, 2000, p. 225)
Fig. 50 The existing rail structure of The Highline that was reused as a neighborhood park and promenade (Calkins, 2012 kindle version, p. 8454)111
Fig. 51 Diagram showing the different strategies of way finding (based on a hospital project) (Gibson, 2009, p. 45)