Ranibizumab (LUCENTIS) as an Anti-Vascular Growth Factor (Anti-VEGF) in OPHTHALMOLOGY

ESSAY

SUBMITTED FOR THE PARTIAL FULFILMENT OF THE MASTER DEGREE IN OPHTHALMOLOGY

YASMINE MAHER MOHAMED SHABAAN M.B.B.CH.

SUPERVISED BY

PROFESSOR DR AHMED IBRAHIM ABU EL NAGA

PROFESSOR OF OPHTHALMOLOGY FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

DR TAMER ABDEL FATAH BADRAN

LECTURER OF OPHTHALMOLOGY FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

> FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

> > **CAIRO. EGYPT**

2010

INTRODUCTION

Recently the antivascular endothelial growth factor (anti-VEGF) agents, also called antiangiogenic drugs such as pegaptanib sodium (Macugen), bevacizumab (Avastine) and ranibizumab (Lucentis) are the focus of numerous clinical studies attempting to validate their efficacy in mono-or combination therapy protocol in ophthalmology in different eye diseases.

Angiogenesis is a vital part of many physiologic processes during growth and development such as (embryonic development, female menstrual cycle, and wound healing).

Vascular endothelial growth factor (VEGF) is thought to be the most important proangiogenic factor in the body. In addition to stimulating neovascularisation it serves as survival factor for existing vessels.

However angiogenesis with negative effects is found in many diseases such as malignancy, endometriosis, diabetic retinopathy and choroidal neovascularisation. Angiogenesis is maintained in balance by a variety of inducers and inhibitors.¹

In ophthalmology vascular endothelium growth factor (VEGF-A) has been shown to cause neovascularization and leakage in models of **ocular** angiogenesis and is thought to contribute to the progression of the macular neovascularization in AMD.² There is also evidence for VEGF overproduction in diabetic retinopathy which has provided a rational therapeutic target to treat Diabetic Macular Edema with anti VEGF.³

Blockade of VEGF (vascular endothelium growth factor) mediated angiogenesis has been well established in recent

years as a therapeutic strategy in oncology, and this approach is now available for the treatment of CNV in patients with neovascular AMD and in diabetic macular edema. These agents were originally introduced for the treatment of cancer through the previous mechanism (reduction in endothelial cell proliferation, in vascular leakage and in new blood vessel formation); subsequently cause reduction in the size of the tumor.

The binding of an Anti VEGF to VEGF-A prevents the interaction of VEGF-A with its receptors on the surface of endothelial cells, reducing the endothelial cell proliferation, the vascular leakage, and the new blood vessel formation.³

Ranibizumab (Lucentis) is one of the anti- VEGF drugs widely used nowadays as an intravitreal injection in treatment of AMD and other diseases. It is a derivative of Bevacizumab (Avastin) which is also anti VEGF. Both drugs are derived from the same monoclonal antibody.

Ranibizumab (Lucentis) is a recombinant humanized IgG1 kappa isotype monoclonal antibody fragment designed for intraocular administration. The drug is designed to inhibit macular angiogenesis, the growth of new blood vessels in the eye, which can rupture and cause visual loss.

Ranibizumab (Lucentis) has a molecular weight of approximately 48 kilo Daltons and is produced by an *E. coli* expression system in a nutrient medium containing the antibiotic tetracycline. Tetracycline is not detectable in the final product.³

In June 2006, the U.S. Food and Drug Administration (FDA) approved Ranibizumab (Lucentis) for the treatment of neovascular wet AMD. The drug received approval in the European Union as the first drug to improve vision in patients with wet AMD in January 2007.

Aim of the work

The aim of this work is to emphasis on Ranibizumab (Lucentis) as a new drug used in ophthalmology as an anti-VEGF. Drug prescription, Clinical Pharmacology, Indications, Doses, Preparation, Administration, Injection procedure, clinical trials, Precautions, Side effects, Ocular and non ocular drug interaction, Over dosage, Contraindications of the drug all will be discussed.

References

- 1. Grisanti S. Mechanismof pathogenic neovascular-isation. Presented on May 18, 2006 in the 6th Euretina Congress in Lisbon, Portugal. *Euortimes supplement Nov 2006*
- 2. Rosenfeld PJ, Brown DM, Heier JS, Boyer D, Kaiser P, Chung C, Kim R. for the MARINA Study group. Ranibizumab for neovascular age-related macular degeneration: 2-year results of the MARINA study. *N Eng J Med* 355:1419-31, 2006
- 3. Mettu PS, Mruthyunjaya P. Current insight into the treatment of diabetic macular edema. *Highligts of Ophthalmology* 36(5):6-10, 2008

استعمال عقار رانيبيزوماب (لوسينتاس) كعقار مضاد لعامل نمو الخلايا المبطنة للاوعية الدموية في طب و جراحة العين

رسالة مقدمه من

الطبيبة ياسمين ماهر محمد شعبان
بكالوريوس الطب و الجراحة
توطئة للحصول على درجة الماجيستير
في طب و جراحة العين
اشراف
الاستاذ الدكتور احمد ابراهيم ابو النجا
استاذ طب و جراحة العين كلية الطب
جامعة عين شمس

الدكتور تامر عبد الفتاح بدران مدرس طب و جراحة العين كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس القاهرة

> > 2010

المقدمة

إنتشر حاليا استعمال مجموعة من العقارات تعرف بمضادات عامل نمو الخلايا المبطنة للاوعية الدموية. وتجرى حاليا مجموعة من الأبحاث لمعرفة مدى فعاليتها في علاج بعض أمراض العيون سواء كانت علاج منفرد اوكعلاج مساعد.

عامل نمو الخلايا المبطنة للاوعية الدموية هو عامل حيوى وهام جدا في جسم الانسان حيث أنه مسئول عن نمو الأوعيه الدمويه في الجسم و المحافظه على أداء وظيفتها في مراحل النمو المختلفه.

يقوم الجسم بالتحكم في نشاط هذا العامل و لكن الزيادة في نشاط هذا العامل قد يؤدى الى أمراض مثل الأورام أوإزدياد في تكوين أوعية دموية مرضية تتسبب في أنزفه وإرتشاحات في بعض الأنسجة مما يؤثر على وظيفتها.

قد أثبتت الدراسات ان ازدياد هذا العامل في العين في الأشخاص الذين يعانون من شيخوخه سنية في مركز الإبصار هو المتسبب في تكون الأوعيه الدمويه المرضيه المسئولة عن الأنزفة و الإرتشاحات التي تحدث في المقولة لهؤلاء المرضي و تتسبب في ضعف شديد في الإبصار لديه وكذلك توجد الدلالات على ان ازدياد هذا العامل في حالات إعتلال الشبكيه السكري هو المسئول عن الإرتشاحات التي تحدث في المقولة ايضا. و تؤثر على قوة الإبصار

العقاقير التى تعمل كمضادات لعامل نمو الأوعية الدموية أثبتت فاعليتها فى علاج الأورام فى السنين السابقة وحديثا بدأ إستعمالها فى أمراض العيون.

رانيبيزوماب (لوسينتاس) هو أحد هذه العقاقير المعترف بها عالميا منذعام 2006 و التي تستعمل حديثا في الحقن داخل العين لعلاج الاعتلال الشيخوخي للمقولة وبعض الأمراض الأخرى.

وبالرغم من ان العقار اعطى نتائج مرضية مع بعض المرضى الا انه لابد من معرفة المذيد عنه

الهدف من هذا العمل

هو عرض لكل ما يتعلق بهذا العقارواستعماله في طب و جراحة العين.

سيتم وصف العقار طريقه عمله الجرعه اللازمة مع عرض دواعى و موانع الاستعمال طريقة تحضير و حقن العقار الاحتياطات اللازمه فى استعماله الاعراض الجانيبية المضاعفات المتوقعة مع عرض نتائج الدراسات السابقه

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my supervisor professor **Dr Ahmed Abu El Naga** for his patience, advice and comments, **and to Dr Tamer Badran** for his time and inspiration.

I thank all my professors, my colleagues and all people in the department of ophthalmology for direct and indirect help they give me.

I owe a great deal to all members of my family who have through their love and care, encouraged, supported and enlightened me throughout the work.

Yasmine Maher

CONTENTS	Page
List of Figures	II
Lists of Tables	IV
List of Abbreviations	IV
1. Vascular Endothelium Growth Factor (VEGF)	1
2. Anti- Vascular Endothelium Growth Factor Drugs (Anti-VEGFs)	15
3. Role of VEGF and Uses of Anti- VEGFs In Ophthalmology	28
4. Lucentis: the Drug Development, Pharmacology, Mechanism, Pre Clinical and Clinical Studies	43
5. Lucentis: Doses, Preparation, Administration and Injection procedure	88
6. Lucentis: Precautions, Side effects, Ocular Non-ocular Drug Interactions, Contraindications and Complications of anti-VEGF	97
7. Summary and Conclusion	104
References	110
Arabic summary	

List of Figures	Page
Fig 1: This ribbon representation shows a dimerized VEGF receptor complex, as seen by X- ray crystallography ⁵	2
Fig 2: How Do New Blood Vessels Grow? 12	5
Fig 3: VEGF ligand at center of the angiogenic Pathway ^{5,6}	7
Fig 4: VEGF ligands, shown in purple, bind to their associated receptors, leading to receptor dimeriza-a-tion phosphorylation of receptor tyrosine kinase domains and a subsequent cellular signaling cascade that leads to angiogenesis ^{5,6,15}	13
Fig 5: By inhibiting the VEGF protein, the blood supply to a tumor may be gradually reduced ¹⁵	15
Fig 6 : Strategies for inhibiting the VEGF pathway ^{6,10}	18
Fig 7: Neuropilin receptors lack an intracellular kinase domain but are able to induce signaling by recruiting ligands to the cell membrane ⁶	20
Fig 8: Specificity of agents targeting the VEGF Pathway 52	20
Fig 9: Mechanism of action of anti-VEGFs 10	27
Fig 10: Schematic of the retinal changes and fundus picture of an eye with neovascular (wet) AMD ⁶⁴	29

List of Figures	Page
Fig 11: Macugen binds to VEGF to prevent VEGF from binding to the receptors on the cell surface. As a result angiogenesis is not stimulated ³³	31
Fig 12: Role of Macugen in prevention of VEGF cascade ³³	31
Fig 13: Avastin binds to the VEGF receptor on the cell surface preventing the process of angiogenesis ³⁴	34
Fig 14: Avastin inhibit VEGF extracellularly inhibiting angiogenesis without disrupting target outside the pathway 34	34
Fig 15: Diagrammatic representation of Lucentis It is a fully humanized antigen-binding portion of a murine anti-VEGF-A monoclonal antibody (Fab) 93,94	44
Fig 16: Diagrammatic representation of the mechanism of action of Lucentis. It inhibits binding of VEGF-A to the VEGF receptors, preventing the cascade of events leading to angiogenesis ⁹³	44
Fig 17: Alamar Blue is an indicator dye quantitatively measure the proliferation of a variety of human or d animal cells 97	47
Fig 18: Schematic of the retinal changes and fundus picture of an eye with neovascular wet AMD ¹⁰¹	49

		_
List of Figures		Page
Fig 19: ETDRS Visual Acuity chart has become standard VA tool in clinical research 102		50
Fig 20 a and b: The Lucentis Clinical Trial Results 104,108		55,56
Fig 21: National Eye Institute Visual Function Questionnaire -25 (VFQ-25) subsections. www.rond org/health/survey/VFQ25		56
Fig 22: The Lucentis pier Clinical Trial Results Summary Of Pier Studies ¹⁰⁹		67
Fig 23: National Eye Institute Visual Function Questionnaire -25 (VFQ-25)Subscales. Disability assessment. www.rond org/health/survey/VFQ25		76
Fig 24- 30:Preparation of the eye for Lucentis Injection ¹³³		90
List of Tables		
Table 1:	The VEGF Family of Protein ^{5,6}	8
Table 2: Classification and Comparison of		
VEGF ^{13,14}		9
Table 3: Endogenous anti VEGFs ²⁷		16
List of Abbreviations		
AEs	Adverse Events	
AMD	Age Related Macular Degeneration	
ANCHOR	Predominantly Classic Choroidal Neovascul	arization

List of Abbreviations		
APTC	Anti platelet Trialists Collaboration	
ANCHOR	Anti-VEGF Antibody for the treatment of predominantly Classic Choroidal Neovascularization in AMD	
BCVA	Best Corrected Visual Acuity	
BRVO	Branch Retinal Vein Occlusion	
BRAVO	Branch Retinal Artery and Vein Occlusion	
CNV	Choroidal Neo-Vascularization	
CRT	Central Retinal Thickness	
csc	Central Serous Chorioretinopathy	
DDME	Diffuse Diabetic Macular Edema	
DLL4	Delta Like Ligand 4	
DME	Diabetic Macular Edema	
ETDRS	Early Treatment Diabetic Retinopathy Study	
GS 101	Gene Signal Anti sense oligonucleotide	
ICGA	Indo Cyanin Green Angiography	
INV	Iris Neovessels	
IVB	Intravitreal Bivacizumab	
IVP	Intravitreal Pegaptanib	
IVR	Intravitreal Ranibizumab	
FA	Fluorescein Angiography	
FRT	Foveal Retinal Thickness	
HIF	Hypoxia Inducible Factor	
HUVEC	Human Umbilical Vascular Endothelial Cell	

MARINA	Minimally Classic Occult Trial of Ranibizumab in Treatment of Neovascular AMD
ME	Macular Edema
MMP	Matrix Metallo Proteinase
MTD	Maximum Tolerated Dose
Mcnv	Myopic Choroidal Neovascularization
NEIVFQ	National Eye Institute Visual Function Questionaire
NV 1FGF	Non Viral Growth Factor
NV	New vascularization
NVG	Neo-Vascular Glaucoma
OCT	Optical Coherent Tomography
QOL	Quality Of Life
PDGF	platelet-Derived Growth Factor
PDR	Proliferative Diabetic Retinopathy
PDT	Photodynamic Therapy
PLGF	Placenta Growth Factor
PRP	Pan Retinal Photocoagulation
RP	Retinitis Pigmentosa
RPE	Retinal Pigment Epithelium
RT	Retinal Thickness
US	Ultra Sound
TKI	Tyrosine Kinase Inhibitor
SAEs	Serious Adverse Events
VPF	Vascular Permeability Factor
VEGF	Vascular Endothelial Growth Factor
VEGFR	Vascular Endothelial Growth Factor Receptor
VISION	VEGF Inhibition Study In Ocular Neovascularization