

DESIGN OF MULTI-AGENT BASED SYSTEM FOR APPLICATION BASED INTRUSION DETECTION

This thesis is submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences.

By

Islam Mohamed ElSayed Hegazy

B.Sc. in Computer and Information Sciences, Demonstrator at Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University.

Under Supervision of **Prof. Dr. Taha ElArif**

Computer Science Department,
Prof. of Computer Science,
Faculty of Computer and Information Sciences,
Ain Shams University.

Prof. Dr. Mostafa Syiam

Head of Computer Science Department, Vice dean for students' affairs, Faculty of Computer and Information Sciences, Ain Shams University.

Dr. Hossam M. Faheem

Computer Science Department, Lecturer of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University.

Cairo 2005

ACKNOWLEDGMENT

First, thanks to God, the most beneficent and the merciful.

I sincerely acknowledge and express my appreciation to *Prof. Dr. Mohamed Said Abd El Wahab*, the Dean of the faculty of Computer and Information Sciences, Ain shams University, for his support, valuable comments, concern and thankful help.

I would like to thank *Prof. Dr. Taha Al-Arif* and *Dr. Hossam Mostafa* for their continuous support, and useful supervision. Special thanks to *Prof. Dr. Mostafa Syiam and Prof. Dr. Essam Atta* for their careful evaluation of my work. I deeply indebted to them for giving this work the suitable final form.

Thanks also to Dr. Zaki Taha, Dr. Ashraf Saad, and my friends and colleagues Wael Othman, Mohamed Abd El-Megeed, Safia Abbass, Mohamed Marey, Salma Hamdy, Mohamed Samy, and Talal.

I cannot express my feelings towards my family who supported me all over through my way and backed me up during my studies wishing me good luck throughout the preparation of this thesis.

ABSTRACT

Network security demands have increased considerably during the last few years. One of the critical networking security applications is the intrusion detection system. Intrusion detection systems should be fast enough to catch different types of intrusions. Due to the arising of new attacks in the cyber world everyday new intrusion detection systems have to be built to cope with these new attacks. Intelligent agents are now used in several fields of computer science. They are ideally qualified to play an important role in intrusion detection systems due to their reactivity, interactivity, autonomy, and intelligence.

In this thesis, a framework for multiagent-based system for intrusion detection using the agent-based technology is designed and implemented. The proposed system is implemented over a multi-threaded program to demonstrate the framework. It is considered a step towards a complete multiagent-based system for network security.

The proposed system uses cooperating agents to perform the detection process for three types of attacks: secure document theft, denial of service attacks, and ping sweep attacks. It uses two detection methodologies: network-based intrusion detection and application-based intrusion detection. It may take an active response, disconnecting the intruder, or just alerting the system administrator.

A testing methodology for evaluating intrusion detection systems that clarifies methods and procedures to be carried out when testing intrusion detection systems is introduced. The performance of the proposed system is evaluated by conducting two groups of experiments according to this methodology. The system is tested against three evaluation factors: risk time, detection ratio, and the intrusion ratio. In the first group, the

system is dedicated to detect a single type of attacks. Whereas in the second group, the system detects all the types of attacks. The experimental results of the proposed system are compared to other research projects and have shown better detection ratios. Also, the characteristics of the proposed system are compared to the characteristics of other intrusion detection systems.

Table of Contents

	lgement	
	ontent	
U	ures	
List of Tar	les	IX
Chapter 1	Introduction	1
1	1.1 Overview	
	1.2 Motivations	3
	1.3 Objectives	
	1.4 Thesis outline	
	N. J. C. M.	-
Chapter 2	Network Security	
	2.2 Types of threats2.3 Kinds of attacks	
	2.3.1 Password-based attacks	
	ι	
	1 &	
	J	
	2.3.5 Network snooping	
	2.5 Technology-related weaknesses	
	2.6 Policy weaknesses	
	2.7 Security controls	
	2.7.1 Identification and authentic	
	2.7.2 Access control	
	2.7.3 Cryptography	
	2.7.4 Firewalls	
	2.7.5 Intrusion detection	
	2.7.6 Authorization	
	2.7.7 Virtual private network	

Chapter 3	Intrusion Detection Techniques and	
	Intelligent Agents	15
	3.1 Introduction	15
	3.2 Overview of intrusion detection systems.	16
	3.2.1 Network-based intrusion detection	19
	3.2.1.1 Architecture	21
	3.2.1.2 Advantages and disadvantages	23
	3.2.2 Host-based intrusion detection	25
	3.2.2.1 Architecture	26
	3.2.2.2 Advantages and disadvantages	29
	3.2.2.3 Application-based intrusion	
	detection	30
	3.2.2.3.1 Advantages and	
	disadvantages	31
	3.2.3 Anatomy of an IDS	31
	3.2.4 Desirable characteristics of an IDS	32
	3.2.5 Limitations of existing IDSs	34
	3.3 Overview of intelligent agents	35
	3.3.1 Multiagent systems	36
	3.3.2 Types of agents	37
	3.3.3 Environments	38
	3.3.4 Agents and objects	39
	3.3.5 Applications of agents	41
	3.4 Previous work	42
	3.5 Summary	43
Chapter 4	The Proposed Intrusion Detection System	
	Implementation	44
	4.1 Introduction	44
	4.2 The sniffing module	46
	4.3 The analysis module	46
	4.3.1 Secure code analysis agent	47
	4.3.2 DoS analysis agent	48
	4.3.2.1 Land attack analysis	51
	4.3.2.2 Xmas tree attack analysis	52
	4.3.2.3 WinNuke attack analysis	53

	4.3.2.4 Echo-character generator attack	
	analysis	55
	4.3.2.5 New Signatures analysis	55
	4.3.2.6 Misconfiguration analysis	57
	4.3.3 Ping sweep analysis agent	59
	4.4 The decision module	62
	4.5 The reporting module	64
	4.5.1 The alert generator agent	64
	4.5.2 The logging agent	66
	4.6 The applicationlog agent	69
	4.7 The update agent	69
	4.8 Summary	69
Chapter 5	System Simulation and Experimental	
	Results	71
	5.1 Introduction	71
	5.2 Detecting a single type of attacks	74
	5.2.1 Results of group 1 experiments	79
	5.3 Detecting all types of attacks	79
	5.4 Comparisons	82
	5.5 Characteristics	84
Conclusion	•••••	87
	k	89
	work	90
		121
		127
	· · · · ·	134
-	marv	

List of Figures

Fig. 3.1	A traditional sensor-based architecture	22
Fig. 3.2	Network-node architecture	23
Fig. 3.3	A centralized host-based architecture	28
Fig. 3.4	A distributed host-based architecture	29
Fig. 4.1	System modules	44
Fig. 4.2	Sniffing Agent flowchart	47
Fig. 4.3	Secure code analysis agent flowchart	49
Fig. 4.4	DoS analysis agent flowchart	50
Fig. 4.5	Land attack analysis flowchart	52
Fig. 4.6	Xmas tree attack analysis flowchart	53
Fig. 4.7	WinNuke attack analysis flowchart	54
Fig. 4.8	Echo-char generator attack analysis flowchart	56
Fig. 4.9	New signatures analysis flowchart	56
Fig. 4.10	Misconfiguration analysis flowchart	58
Fig. 4.11	Learning algorithm flowchart	60
Fig. 4.12	Add packet procedure flowchart	61
Fig. 4.13	Ping sweep analysis agent flowchart	63
Fig. 4.14	Decision agent flowchart	65
Fig. 4.15	Alert generator agent flowchart	67
Fig. 4.16	Logging agent flowchart	68
Fig. 4.17	CodeAttack flowchart	70
Fig. 5.1	Timeline of evaluation factors	73

Fig. 5.2	Risk time against number of secure document	
	theft attacks	77
Fig. 5.3	Risk time against number of DoS attacks	78
Fig. 5.4	Risk time against number of ping sweep attacks	78
Fig. 5.5	Risk time against number of attacks	82
Fig. 5.6	Detected intrusion ratio against actual	
	intrusion ratio	83
Fig. 5.7	Detection ratio of various intrusion detection	
	systems	84
Fig. A.1	IP datagram header	121
Fig. A.2	TCP header format	124
Fig. B.1	The system working	128
Fig. B.2	The agent's pop-up menu	129
Fig. B.3		129
Fig. B.4	The hosts' tab	130
Fig. B.5	The hosts' configurations tab	131
Fig. B.6	_	132
Fig. B.7		133
Fig. B.8	-	133

List of Tables

Advantages and disadvantages of the centralized host-based architecture	27
Advantages and disadvantages of the	28
	32
1 0	32
1	
countermeasures	71
Intrusion ratios of the dataset	73
Testing methodology	74
Results of experiment 1	75
Results of experiment 2	76
Results of experiment 3	76
Results of group 1 experiments	79
Results of experiment 4	80
Characteristics of various intrusion detection	
systems	86
	Advantages and disadvantages of the distributed host-based architecture

Chapter 1

Introduction

1.1 Overview

Security is one of the major issues for any network. It involves securing resources from damages and intruders. Making a network completely secure is practically impossible since there are a lot of areas to be protected and also new threats arise everyday. The solution to this problem is to try to build intelligent systems that are capable of securing the network and learn from their experience over time.

The Internet protocol was originally developed to connect a group of scientists who need to share scientific information. It was developed by the department of defense (DoD) of the United States. Then it began to gain popularity through ordinary people such that anyone can connect to the Internet with a small computer. Companies connecting their networks to the Internet found that they had to secure their resources and information from unauthorized access.

Computer security deals with prevention and detection of unauthorized actions by users of a computer system. For a secure system to be successful, there should be some protective measures; prevention: take measures that prevent your assets from being damaged. Detection: take measures that allow you to detect when an asset has been damaged, how it has been damaged, and who has caused the damage. Reaction: take measures that allow you to recover your assets or to recover from damage to your assets [1].

Introduction Chapter 1

Also, a secured system has to cover three aspects; confidentiality: prevention of unauthorized disclosure of

information. Integrity: prevention of unauthorized modification of information. Availability: prevention of unauthorized withholding of information or resources [1].

Generally, computer security has to keep unauthorized users from accessing sensitive information. The role of confidentiality is to maintain this feature. Another feature of computer security is to ensure that information is consistent and not corrupted (integrity). Also, computer security should make sure that the authorized users could access the information they are authorized to use and that is maintained by the availability aspect.

An agent is an autonomous computational entity such as a software program that can be viewed as perceiving and acting upon its environment and that is autonomous in that its behavior at least partially depends on its experience. It operates flexibly and rationally in a variety of environmental circumstances given its perceptual and effectual equipment. An agent on the basis of key processes such as problem solving, planning, decision-making, and learning achieves behavioral flexibility and rationality. As an interacting entity, an agent can be affected in its activities by other agents and perhaps by humans. A key pattern of interaction in multiagent systems is goal- and task-oriented coordination, both in cooperative and in competitive situations. In the case of cooperation several agents try to combine their efforts to accomplish as a group what the individuals cannot, and in the case of competition several agents try to get what only some of them can have. The long-term goal is to develop mechanisms and methods that enable agents to interact as well as humans, and to understand interaction among intelligent entities whether they are computational, human, or both [2].

Introduction Chapter 1

What makes an intelligent agent different from a typical computational procedure is the fact that intelligent agents posses among other characteristics, the ability to satisfy their goals, based upon their former interaction with other agents [3].

Multiagent system is a software system that consists of multiple agents that communicate and cooperate with each other to solve complex problems and implement complex systems [4].

1.2 Motivations

Rapid development realms of artificial intelligence (A.I.) could have been more efficiently utilized keeping in mind that intelligent agents are gaining more attention in developing security tools due to its intrinsic features.

We have two main reasons to build an intrusion detection system with agents. The first reason is that multiagent systems have the capacity to play a key role in current and future computer science and its application. Modern computing platforms and information environments are distributed, large, open, and heterogeneous. The increasing complexity of computer and information systems goes together with an increasing complexity of their applications. These often exceeds the level of conventional, centralized computing because they require the processing of huge amounts of data, or of data that arises at geographically distinct locations. To cope with such applications, computers have to act more as agents, rather than just parts.

The second reason is that multiagent systems have the capacity to play an important role in developing and analyzing models and theories of interactivity in human societies.

Introduction Chapter 1

Humans interact in various ways and at many levels: for instance, they observe and model, they request and provide information, they negotiate and discuss, they develop shared views of their environment, they detect and resolve conflicts, and they form and dissolve organizational structures such as teams, committees, and economics.

1.3 Objectives

The objective of this thesis is to build an intrusion detection system using software agents. The intrusion detection system should be able to detect, analyze, and deny access to intruders in an acceptable time interval such that the multiagent-based system will be ideally qualified to protect networks subject to attacks in real time.

1.4 Thesis outline

The thesis is organized as follows: chapter 2 discusses network security issues regarding types of threats, kinds of attacks, points of weaknesses, and security controls. Chapter 3 provides background information about the techniques of implementing intrusion detection systems, the anatomy and characteristics of intrusion detection systems. Also, it discusses the types of agents, their environments, and their applications. Chapter 4 explains the proposed framework for building an intrusion detection system, and highlights the use of agents in this framework. Chapter 5 highlights the performance of the system by explaining the groups of the experiments conducted on the proposed system and their results. Also, it provides the comparisons conducted with other research projects regarding the experimental results and the characteristics. Finally, the conclusion of the thesis and the suggested future work.

Chapter 2

Network Security

2.1 Introduction

External network attacks can be categorized into IP spoofing attacks, packet sniffing, sequence number predication attacks and trust-access attacks. Categories of internal attacks include passwords attacks, session hijacking attacks, shared library attacks, and technological vulnerability attacks [5].

Computer network security can be categorized as follows [5]:

- 1. Security enhancement software: thus replacing an operating system's built-in security software.
- 2. Authentication and encryption software: encrypts and decrypts computer files.
- 3. Security monitoring software monitor: monitors different operations of a computer network and outputs the results to system administrators.
- 4. Network monitoring software: monitors user's behavior or monitors incoming and outgoing traffic.
- 5. Firewall software and hardware: runs on the Internet/intranet entrance to a computer network, and checks all incoming network traffic for its contents at the network and transport layers of the OSI model.

2.2 Types of threats

There are various types of threats that attack networks. These attacks are summarized in eavesdropping, masquerade, replay, data manipulation, misrouting, trapdoor, viruses,