

Role MSCT coronary angiography in evaluating patients with ischemic heart disease

Thesis

Submitted for partial fulfillment of the M.Sc. degree in radio diagnosis

By

Mustafa Saad Yassin

M.B.CH.B

Supervised by

Dr. Ahmed Mostafa Mohammed

Professor of Radio Diagnosis / Ain shams university

Dr. Mennatallah Hatem Shalaby

Lecturer of Radio Diagnosis /Ain shams university

Facualty of medicine

Ain shams University

2016

Acknowledgment

I Praise Allah Thank Him, Seek His Help, Guidance and Forgiveness ... then:

My deepest thanks and appreciation to Dr. Ahmed Mostafa Mohammed, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his invaluable guidance and help in supervising this work. No words can express my feelings, respect and gratitude to him.

I am grateful to Dr. Mennatallah Hatem Shalaby, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her effort.

My deepest thanks and appreciation to My Father and Mother, My Wife and My Brothers who lighten my way with their Guidance, Kindness, Love and support by all the means. Letters stand still in front of you, My Love and Gratitude.

At last, but definitely not the least, I deeply thank Friends for their endless support and encouragement to complete this work.

List of Contents

Contents	Page
List of Abbreviations	II
List of Figures	III-V
List of Tables	VI
Introduction & Aim of the work	
Review Of Literature:	
Chapter 1: Anatomic considerations of the Coronary Arteries	
Chapter 2: Pathological considerations of Coronary causes of Chest Pain	
Chapter 3: Principles of Multi-Slice CT coronary Angiograph	
Chapter 4: Multi-Slice CT coronary angiography manifestations of ischemic heart disease	
Materials and Methods	
Results	
Illustrative Cases	
Discussion	
Summary and Conclusion	
Recommendations	
References	
Arabic Summary	

List of Abbreviations

an	m D	T 4 D	Left Anterior	
3D	Three Dimension	LAD	Descending	
ACD	Acute Coronary Disease	LAO	Left Anterior Oblique	
ACS	Acute Coronary Syndrome	LM	Left Main Coronary	
AEC	Automatic Exposure control	LCX	Left Circumflex	
AHA	American Heart Association	LV	Left Ventricle	
Ao	Aorta	mA	milli-Ampere	
AP	Antero posterior	mAS	milli-Ampere Second	
AVN	Atrioventricular Node	MDCT	Multi-Detector	
	Titiloventifediai 1vode		ComputedTomography	
BMI	Body Mass Index	MI	Myocardial Infarction	
bpm	Beat per Minute	MIP	Maximum Intensity	
БРШ	Bout per Minute	14111	Projection	
CABG	Coronary Artery Bypass	MPR	Multi-Planar	
CALOG	Grafting	1711 14	Reformatting	
CACS	Coronary Artery Calcium	MSCT	Multi-Slice Computed	
	Scoring		Tomography	
CAD	Coronary Artery Disease	mSV	milli-Sievert	
CHD	Coronary Heart Disease	mS	milli-Second	
CT	Computed Tomography	NPV	Negative Predictive Value	
CTCA	CT Coronary Angiography	OM	Obtuse Marginal Artery	
D	Diagonal branch	PDA	Posterior Descending Artery	
DM	Diabetes Mellitus	PLB	Posterior Lateral Branch	
DSCT	Dual Source CT	RAO	Right Anterior Oblique	
EBCT	Electron Beam CT	RCA	Right Coronary Artery	
ECG	Electrocardiography	RI	Ramus Intermedius Artery	
HU	Hounsfield Unit	ROI	Region Of Interest	
IHD	Ischaemic Heart Disease	S	Septal Branch	
IMB	Inferior Marginal Branch	SD	Standard Deviation	
KV	Kilo Volt	VR	Volume Rendering	
	IXIIO VOIL	V IX	Reformatting	
KVP	Kilo Voltage Peak	RV	Right ventricle	

List of Figures

Fig. No	Title	Page
Fig. 1	Anterior View of Aortic Valve	
Fig. 2	Anatomy of the right coronary artery	
Fig. 3	Anatomy of the distal right coronary artery	
Fig. 4	Right conal artery	
Fig. 5	Sinus node branch (SNB) course	
Fig. 6	Origin of a marginal acute branch from the aorta	
Fig. 7	Origin of the coronary arteries from the aorta	
Fig. 8	Normal LAD artery coursing in the interventricular groove	
Fig. 9	Septal branches and diagonal branches of the LAD artery	
Fig. 10	Trifurcation of left main coronary artery	
Fig. 11	Anatomical dominance of the right coronary system	
Fig. 12	Anatomical dominance of the left coronary system	
Fig. 13	Coronary arteries and veins	
Fig. 14	Progression of atherosclerosis	
Fig. 15	The different compositions of coronary atherosclerotic plaques	
Fig. 16	Development of atherosclerosis	
Fig. 17	Conventional retrospectively ECG-gated coronary CT angiography	
Fig. 18	Prospectively ECG-triggered coronary CT angiography	
Fig. 19	Axial images in patient with heart rate of 77 bpm show motion artifacts	
Fig. 20	cardiac pulsation-related artifacts	
Fig. 21	Pitch	
Fig. 22	Illustration shows prepatient collimation of the x-ray beam	
Fig. 23	Bolus tracing technique	

Acknowledgment

Fig. 24	Complete and homogeneous enhancement of left ventricle and coronary arteries		
Fig. 25	Scanogram delineating the limits of the acquisition volume		
Fig. 26	A depiction of the three major steps to performing a cardiac computed tomographic angiogram		
Fig. 27	Curved multiplanar reformatted image of left anterior descending coronary artery		
Fig. 28	Axial MIP image and Thin-slab MIP image shows the normal RCA		
Fig. 29	3D volume rendering images clearly demonstrate the normal RCA		
Fig. 30	Virtual intravascular endoscopy		
Fig. 31	Calcified plaques		
Fig. 32	Angiographic view image clearly demonstrates the distribution of coronary artery stenosis and coronary calcifications		
Fig. 33	An example of attenuation artifact		
Fig. 34	Streak artifacts		
Fig. 35	Involuntary motion		
Fig. 36	An example of a misalignment		
Fig. 37	Two examples of interpolation artifact		
Fig. 38	High-attenuating artifacts		
Fig. 39	The appearance of a severe stenosis in the mid-right coronary artery		
Fig. 40	the degree of luminal narrowing		
Fig. 41	High-grade luminal stenoses		
Fig. 42	Various types of coronary atherosclerotic plaque		
Fig. 43	cMPR of LAD demonstrates a non-calcified plaque		
Fig. 44	M;ixed plaque with a central hyperdense calcific core and a peripheral fibrolipidic cap		
Fig. 45	CTCA of the Right Coronary Artery showThe proximal part of the stent lies in a false lumen		
Fig. 46	A volume rendered image illustrating the appearances of graft markers, graft stumps and pledgets		

Acknowledgment

Fig. 47	Malignant' course of the coronary arteries	
Fig. 48	Anomalous origin of the left anterior descending	
	coronary artery	
Fig. 49	Anomalous origin of the left anterior descending	
11g. 4)	coronary artery	
Fig. 50	Analysis of LVEF With MSCT	
Fig. 51	The left main coronary artery and great cardiac vein are	
Fig. 51	dilatation with AV fistula	
Fig. 52	Right sinus of Valsalva aneurysm	
Fig. 53	Coronary artery dissection	
Eig 54	cMPR: Intramyocardial course of the left anterior	
Fig. 54	coronary artery	
Fig. 55	Pie chart age distribution of the study group	
Fig. 56	Pie chart sex distribution of the study group	
Fig. 57	Pie chart risk factors distribution of the study group	
E: ~ 50	Pie chart No. of arterials affected distribution of the	
Fig. 58	study group.	
Fig. 59	Pie chart distribution of arterials affected of the study	
	group	
Fig. 60	Pie chart type of plaque distribution of the study group	
Fig. 61	Pie chart stenosis distribution of the study group.	
Fig. 62	Pie chart calcium scoring distribution of the study group	

List of tables

Table	Title	Page
No.		
Table 1	The types of ACS depends on the degree of coronary obstruction and associated ischemia	
	Technical Specifications of Imaging Protocols for	
Table 2	Contrast-Enhanced Coronary Angiography by MSCT	
Table 3	Limitation and solution with use of CTCA	
Table 4	Severity of coronary artery stenosis on CT Angiography	
Table 5	Age distribution of the study group	
Table 6	Sex distribution of the study group	
Table 7	Risk factors distribution of the study group	
Table 8	No. of arterials affected distribution of the study group	
Table 9	Distribution of arterials affected of the study group	
Table10	Type of plaque distribution of the study group	
Table11	Stenosis distribution of the study group	
Table12	Calcium scoring distribution of the study group	

Abstract

This study included 25 patients (14 males and 11 females). Their ages ranged between 40-70 years. All presented with ischemic heart disease diagnosed by history, examination and laboratory investigation were referred to radio-diagnosis department of Ain shams university hospital for CT coronary angiography examination. The preliminary results have shown the great role of CT coronary angiography examination in detecting the presence and assessing extent of ischemic lesion (disease extension and coronary plaque scores) and guiding further clinical management.

(Key Words: CT coronary angiography, iscemic heart disease)

Introduction

Ischemic heart disease most commonly due to coronary artery disease is still one of the most frequent cause of death worldwide. Computed tomography coronary angiography (CTCA) is a useful tool for the non-invasive assessment of coronary artery disease (CAD)(Arbab-Zadah et al., 2012).

In the past, emergency department triage based on history, clinical examination, serial electrocardiogram (ECG), and biomarkers alone as diagnostic tools for ischemic coronary heart disease, some of results were false negative and 2% of the patients discharged who were later on diagnosed with ((Acute Coronary Syndrome)); such patients have higher mortality rates. Accordingly, it is now standard in many emergency departments and chest pain centers to evaluate such patients with a "rule-out myocardial infarction" strategy followed by stress testing and/or cardiac imaging; Advances in coronary computed tomographic angiography (CCTA) have made it possible to image the coronary vessels rapidly and non-invasively, with excellent accuracy for detecting the presence and assessing the severity of luminal stenosis and extraluminal plaque (Goldstein et al., 2011).

Treatment of patients with acute chest pain mostly due to ischemic heart disease by an inconclusive initial evaluation with the use of biomarkers and ECG testing is often challenging and inefficient .The majority of patients have underlying CAD (Hoffman et al., 2012).

Contrast-enhanced computed tomographic angiography (CCTA) has high affinity for the detection of clinically significant CAD, as compared with invasive coronary angiography in patients in a stable condition with suspected or known CAD (**Hoffman et al., 2012**).

Before advent of CT scan, conventional coronary angiography was the gold standard for assessment of the heart and coronary arteries, owing to its excellent spatial and temporal resolution; however, the procedure is invasive and can cause serious complications, for example thromboembolism and arterial dissection. Non-invasive imaging methods such as (CTA) can therefore be advantageous. Also the applications of coronary artery CTA have, in the past, been limited by problems such as cardiac motion, respiratory motion and the small size of coronary arteries. However, technological advances with MSCT scanners have enhanced the spatial and temporal resolution and overcome the problems achievable by CTA (**Huang et al., 2010**).

Contrast-enhanced MSCT is a non-invasive technique for the detection, visualization and characterization of stenotic artery disease. It could act as a gatekeeper prior to cardiac catheterization and finally replace conventional diagnostic modalities. Recent generations of MSCT machines with higher and developing spatial and temporal resolution own a non-invasive approach to accurately delineate coronary vessel anatomic structures, with increasingly more detector rows number and higher gantry speeds, allowing for best visualization of the coronary arteries (Youssef et al., Y. 12).

Aim of the work

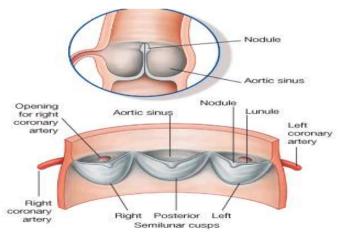
The aim of the study is to evaluate the rule of multi-slice CT coronary angiography in evaluation of patients with ischemic-coronary artery disease.

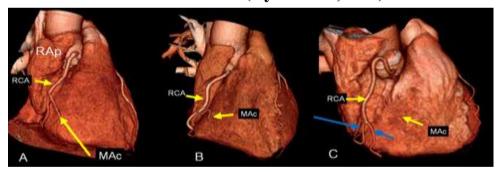
Chapter 1

Anatomy of Coronary Arteries

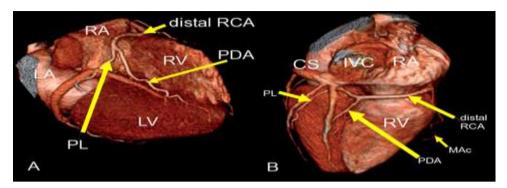
The **coronary arteries** arise just distal (superior) to the aortic valve from the coronary sinuses and supply myocardium with oxygenated blood. They divide and encircle the heart to cover its surface with a meshy network resembling perhaps a slightly crooked crown.

The typical anatomical division consists of two coronary arteries, a left coronary and a right coronary, originated from the left and right aortic or coronary sinuses respectively, in the proximal ascending aorta. They are the only two branches of the ascending aorta.




Fig. (1). Anterior View of Aortic Valve. (Quoted from Drake et al., 2007).

The right coronary artery


The course of right coronary(RCA) artery in the right atrioventricular groove to the inferior surface of the heart, where upon it turns anteriorly at the crux as the inferior interventricular artery (in right dominant circulation).

Right coronary artery branches:

- Conus artery, may arise directly from aorta in (30-35%) of patients, it is supply RV outflow track
- sino-atrial-nodal artery may arise directly from left circumflex artery
- Acute marginal branches (A1 or AM1, 2, etc) which are supply the free wall of RV
- Sinotubular artery
- Inferior interventricular artery (posterior descending artery, PDA)
- Branch to atrioventricular node (**Ryan et al ,2011**)

Fig. (2). Anatomy of the right coronary artery (RCA). A: Proximal and middle segments of the vessel coursing in close relationship with the right atrial appendage (RAp) and giving origin to the marginal acute branch (MAc); B: Example of a tortuous MAc; C: Early bifurcation of the RCA at its middle segment (blue arrows). (*Quoted from Petracca*, 2006).

Fig. (3). Anatomy of the distal (RCA). A: Bifurcation of the vessel near the region of the crux cordis into a posterior descending artery (PDA) and a posterolateral (PL) branch; B: Example of a long PL branch reaching the left margin of the heart; a marginal acute (MAc) artery is also seen over the right margin; CS: coronary sinus; IVC: inferior vena cava; LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle. (*Quoted from Petracca, 2006*).

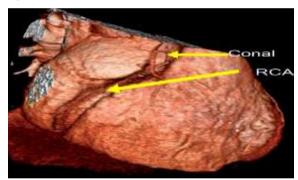


Fig (4). Right conal artery in a case with a relatively narrow right coronary artery (RCA). (Quoted from Petracca, 2006).

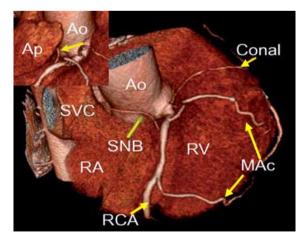


Fig.(5) Sinus node branch (SNB) coursing close to the right atrial appendage (Ap) (see inset, at top left) and ending near the region of drainage of the superior vena cava (SVC). Ao: aorta; MAc: marginal acute branch; RA; right atrium; RV: right ventricle. (*Quoted from Petracca*, 2006).