Peptidyl Argenine Deiminase- 4 (PADI4) as Diagnostic and Prognostic Marker in Rheumatoid Arthritis

Thesis

Submitted in Fulfillment of Master Degree of Physical Medicine Rheumatology and Rehabilitation

By

Nada Hamdi Hussein

M.B.,B.Ch., 2013 Faculty of Medicine-Ain Shams University

Under supervision of

Prof. Dr. Nadia Salah Kamel Abd el Bar

Professor of Physical Medicine Rheumatology and Rehabilitation Faculty of Medicine - Ain Shams University

Prof. Dr. Neven Mahmoud Taha Fouda

Professor of Physical Medicine Rheumatology and Rehabilitation Faculty of Medicine - Ain Shams University

Dr. Dina Abou Bakr Farrag

Lecturer in Physical Medicine Rheumatology and Rehabilitation Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Nadia Salah Kamel Abd el Bar, Professor of Physical Medicine Rheumatology and Rehabilitation - Faculty of Medicine-Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Prof. Dr. Neven Mahmoud Taha Fouda, Professor of Physical Medicine Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr. Dina Abou Bakr Farrag, Lecturer in Physical Medicine Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Special thanks goes to the team of immunology laboratory, Ain Shams University Hospital for their help and co-operation.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Nada Hamdi Hussein

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of literature	
Rheumatoid Arthritis	5
Patients and Methods	28
Results	38
Discussion	59
Summary and Conclusion	70
Recommendations	72
References	73
Appendix	92
Master Table	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Makla (1):	Tissue ammassion of different	DAD
Table (1):	Tissue expression of different isoenzymes, their substrates and role	
Table (2):	Modified health assess	
	questionnaire (MHAQ)	
Table (3):	Demographic characteristics of studied groups	
Table (4):	Basal clinical findings and labor	
1 abie (4).	findings of the studied cases	·
Table (5):	PGA, MHAQ and DAS28 among case	
Table (6):	Shows DAS28 distribution among ca	
Table (7):	Serum Anti CCP among case group	
Table (8):	Diagnostic characteristics of basal	
	CCP	
Table (9):	The serum PAD4 among RA cases	
	control group	
Table (10):	Diagnostic characteristics of basal F	PAD-4
	$\geq 250~\mathrm{pg}$ /ml	
Table (11):	Diagnostic performance of basal Pa	
m 11 (10):	in diagnosis of rheumatoid arthritis.	
Table (12):	Treatments of patients	
Table (13):	Comparison between clinical	
	morning stiffness and tender & sv	
	joints among case group before and follow up.	
Table (14):	Comparison between PGA, MHAG	
14510 (14)	DAS28 before and after follow up a	-
	RA group	_
Table (15):	DAS28 grades among case group b	
	and after follow up	
Table (16):	Comparison between serum PAD 4	, Anti
	CCP and ESR before and after follow	-
Table (17):	Correlation between PAD4& Anti	
	and other data	52

List of Tables (Cont...)

Table No.	Title	Page No.
Table (18):	Correlation between PADI-4& Anti- changes and other data changes in group (N=20).	n RA
Table (19):	Comparison between improved and improved cases regarding clinical DAS28 MHAQ score ESR, Anti CCl PAD4.	d not data P and
Table (20):	Diagnostic performance of PADI-4, CCP and ESR in prediction	Anti- n of
Table (21):	improvement	ADI-4

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Overall structure of PAD4	8
Figure (2):	Citrullination by PAD4	10
Figure (3):	Structural basis for Ca ²⁺ -induced ac of human PAD4	
Figure (4):	Formation of neoantigens and product autoantibodies	
Figure (5):	DAS28 distribution among cases	41
Figure (6):	Comparison between case and groups regarding Anti.	
Figure (7):	Comparison between RA group and group regarding PADI-4 serum level	
Figure (8):	ROC curve for basal PADI-4 in diof rheumatoid arthritis	0
Figure (9):	DAS28 grades among RA patients	49
Figure (10):	Shows that PADI-4 non-signidecreased after follow up	•
Figure (11):	Shows that Anti-CCP non-signic changed after treatment	•
Figure (12):	Scatter diagram shows positive corr between PADI-4 changes and changes and changes	inges of
Figure (13):	ROC curve for PADI-4, Anti-CCP a performance performance in predi improvement rheumatoid arthritis	ction of

List of Abbreviations

Abb.	Full term
ACPA	Anti-citrullinated peptide antibodeis
	Anti-keratin autoantibodies
	Antibodies to a cyclic citrullinated peptide
	Anti-perinuclear factor
	. Ani –Fillagrin autoantibodies
	Anti -Mutilated Citrullinated Vimentin
CCP	Cyclical citrullinated peptides
	Disease activity score
	Disease modifying antirheumatic drug
	Enzyme linked immune sorbent assay
<i>ESR</i>	Erythrocytes Sedimentation Rate
<i>ICs</i>	Immune complexes
<i>IP</i>	Interphalyngeal
<i>MBP</i>	Myelin basic protein
<i>MCP</i>	Metacarpophalyngeal
MHAQ	Modified health assessment questionnaire
<i>MS</i>	Multiple sclerosis
<i>MTP</i>	Metatarsophalyngeal
<i>MTX</i>	Methotrexate
<i>NETs</i>	Neutrophil extracellular traps
	Peptidyl Arginine Deaminase
PAD4=PADI4	Peptidyl arginine deiminase 4
<i>PDCs</i>	Plasmacytoid dendritic cells
<i>PGA</i>	Patient global assessment
	Proximal interphalyngeal
	Rheumatoid Arthritis
	Rheumatoid factors
<i>SF</i>	•
	Systemic lupus erythrymatosis
	Tumor necrosis factor α
<i>VEGF</i>	Vascular endothelial growth factor

Abstract

Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint destruction, functional impairment, disability, and reduced life expectancy. The bone and cartilage destruction rarely heals, the damage accumulates over time, thus early interfering with the inflammatory cascade before it is fully established is most effective.

Aim of the Work: His study is designed to assess the role of serum PADI4 level as diagnostic and prognostic marker in RA patients.

Patients and Methods: This study was conducted on 31 RA patients diagnosed according to the American College of Rheumatology (ACR) new classification criteria. Ten healthy individuals matched for age and sex who served as a control group.

In conclusion, our study highlighted that PAD4 sensitivity was 90.3% and specificity was 100% while anti-CCP sensitivity was 93% and its specificity was 100%. According to these findings serum PAD4 provide additional diagnostic value not over the already established anti-CCP, but it is correlated with disease activity and can be used in follow up remission in RA patients.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint destruction, functional impairment, disability, and reduced life expectancy. The bone and cartilage destruction rarely heals, the damage accumulates over time, thus early interfering with the inflammatory cascade before it is fully established is most effective (*Ideguchi et al.*, 2006).

Disease modifying drugs (DMARDS) and particularly new biological agents have been shown to control both clinical and laboratory signs. Therefore, it is evident that therapeutic intervention will have greater effect on the outcome if started early, and ideally, if commenced even before damage has occurred (Mitchell et al., 2007).

Rheumatoid factors (RFs) and other autoantibodies have been associated with RA. Antibodies to a cyclic citrullinated peptide (anti-CCP) were found to be specific for RA, including the early form. They have a possible prognostic value, either individually or in combination with RF, as a marker of a more serious disease. Anti-CCP antibodies were incorporated into diagnostic criteria for RA (American College of Rheumatology /European League Against Rheumatism) ACR-EULAR, and their positivity showed association with erosive arthritis (Manivelavan et al., 2012).

In addition to the widely used RF and anti-CCP autoantibody assay, several tests have emerged to help in diagnosis of RA such as serum anti PAD4 (Karlson et al., 2016), Anti-carbamylated protein antibodies (Koppejan et al., 2016), and recently serum PAD4 which is the ezyme that cause citrullination of proteins leading to production autoantibodies (Umeda et al., 2016).

Peptidyl Arginine Deaminase (PAD) enzymes consist of five PAD isoforms (PADs 1 to 4 and PAD6), with differential cellular and tissue distribution, that have been described in responsible for humans. They are post-translational modification of the amino acid arginine to citrulline, a process known as citrullination. This process regulates homeostatic processes such as keratinocyte differentiation and maintenance of myelin sheath insulation. Also it is involved in the innate immune response and regulation of chemokine activity (Harauz and Musse, 2007).

In addition PADs have been linked also to the pathogenesis of an increasing number of chronic inflammatory diseases, including neurodegenerative conditions such as multiple sclerosis and Alzheimer's disease (Mortier et al., *2011*).

The process of citrullination is likely to be of significance in patients with RA as PADs are expressed in synovial tissues, also neutrophils express high levels of PAD

and accumulate in the synovial fluid (SF) during disease flares. One isoform of these PAD family is PAD4 which has been found extensively expressed in T cells, B cells, macrophages, neutrophils, fibroblast-like cells and endothelial cells in the lining and sublining areas of the RA synovium. The immunoreactivity of citrullinated fibrin with IgA and IgM in the RA synovium supports the notion that citrullinated fibrin caused by PAD 4 enzyme activity is a potential antigen of RA autoimmunity (Vossenaar et al., 2004).

However, the role of PAD 4 in the development of RA and in disease evolution has not been fully elucidated. Subsequent studies showed that PAD 4 may also act as an antigen, generating antibody responses in subjects with RA and these Anti PAD antibodies can be used as an additional marker with anti CCP and RF (Yang et al., 2015).

While Quian et al. (2011) and Umeda et al. (2016) had studied the role of serum PAD4 enzyme level as an additional diagnostic marker of RA and for monitoring disease activity in addition to anti-CCP and RF.

AIM OF THE WORK

his study is designed to assess the role of serum PADI4 level as diagnostic and prognostic marker in RA patients.

RHEUMATOID ARTHRITIS

Pheumatoid arthritis (RA) is a chronic, systemic, progressive autoimmune disease, that principally attacks the joints in a systemic pattern producing an inflammatory synovitis that often progresses to destruction of the articular cartilage and ankylosis of the joints (*Hekmat et al.*, 2011).

RA affects almost 1-2% of the population. It has an impact on health causing pain, fatigue, radiological damage, functional disability and reduced life expectancy (*Cohen et al.*, 2007).

Extra-articular complications also often occur, leading to a worsening of the prognosis (*Okuda*, 2008).

RA is considered an autoimmune disease (*Firestein.*, 2003). Autoimmunity and the overall systemic and articular inflammatory load drive the destructive progression of the disease. However, structural changes can be visualized by conventional radiography or other imaging techniques and distinguish RA from other arthritic disorders (*Bohndorf et al.*, 1996).