Vitamin D Status among Egyptian Pregnant Women with Gestational Diabetes Mellitus

Thesis

Submitted for partial fulfillment of the master degree in Endocrinology and metabolism

By

Faiza Ali Mouftah Emazeg

M.B.B.CH

Supervised by

Prof. Dr. Mohamed Saad Hamed

Professor of Internal Medicine, Diabetes and Endocrinology Faculty of Medicine-Ain Shams University

Dr. Maram Mohamed Maher Mahdy

Ass. Professor of internal Medicine, Diabetes and Endocrinology Faculty of medicine-Ain Shams University

Dr. Amr Helmy Yehia

Lecturer in Obstatrics and Gynaecology Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain-Shams University

2016

سورة البقرة الآية: ٣٢

My thanks are submitted first and foremost to **ALLAH** Who gave me the strength and ability to complete this work.

I would like to express my thanks and appreciation to **Prof. Dr. Mohamed Saad Hamed,** Professor of Internal Medicine, Diabetes and Endocrinology, Faculty of Medicine-Ain Shams University, for his candid opinions, timely feedback, insights and the effort and time he has devoted to the fulfillment of this work. I am indebted to his meticulous follow-up and constructive criticism.

My sincere gratitude and appreciation are also due to **Dr. Maram Mohamed Maher Mahdy,** Ass. Professor of internal medicine, Diabetes and Endocrinology, Faculty of medicine-Ain Shams University, for her kind help, constant encouragement, constructive criticism, and the time and effort she dedicated to this work.

I can't forget to thank with all appreciation, **Dr. Amer Helmy Yehia**, Lecturer in Obstatrics and Gynaecology, Faculty of Medicine-Ain Shams University, for the efforts and time he has devoted to accomplish this work.

Last but not least, all thanks to all members of my Family, especially, my Husband and my Mother, for pushing me forward in every step in the journey of my life.

List of Contents

Subject	Page No.
List of Tables	i
List of Figures	iv
Introduction	1
Aim of the Work	5
Revie of Literature	
An Overview of Vitamin D	6
Gestational Diabetes Mellitus	41
Vitamin D Status in Women with Gestational Diabetes	84
Subjects and Methods	101
Results	107
Discussion	135
Summary	145
Conclusion	148
Recommendations	149
References	150
Arabic Summary	<u> </u>

List of Abbreviations

AAP : American Academy of Pediatrics

ACOG : American College of Obstetricians and Gynecologists

ADA : American Diabetes Association.

ADIPS : Australasian Diabetes in Pregnancy Society

Full-term

AMPK : Adenosine monophosphate-activated protein kinase

BIAsp : Biphasic insulin aspart

BMI : Body mass index

Ca : Calcium

Abbr.

CAT : Choline acetyltransferase

CGMS : Continuous glucose monito ring system

CI : Confidence interval

CNS : Central nervous system

CSIF : Cytokine synthesis inhibitory factor

DBP : Vitamin D binding protein

DM : Diabetes mellitus.

dRTA : Distal renal tubular acidosis

Enzyme Vmax: maximal velocity.

FAD : Food and drug administration.

FBG: Fasting blood glucose.

FDA : Food and Drug Administration

FGF : Fibroblast growth factor.GABA : Gama amino butyric acid.GDM : Gestational diabetes mellitus

GDNF : Glial cell line-derived neurotrophic factor

GSH : Glutathione

HAPO: Hyperglycemia and adverse pregnancy outcomes

HbA1c : Glycosylated hemoglobinHbAic : Glycosylated hemoglobin.

HIV: human immune virus.

HOMA-R: Homeostasis model assessment for insulin resistance.

IADPSG: International association of diabetes and

pregnancy study group.

IF- γ : Interferon γ

IGT : Impaired glucose tolerance

IL : Interleukin

IOM : Institute of medicine
IU : International unit

KDOI : Kidney dialysis outcome initiative.

Km enzyme : Michaelis constant

LGA : Large for gestational age

MAPkinase: Mitogen-activated protein kinase.

MARRS : Membrane associated rapid response steroid-

binding receptors.

MIG : Metformin in gestational diabetes

miRNAS : Micro RNAs

MNT : Medical nutritional therapyMPC : Model predictive controlMPC : Mean plasma glucose

MPG : Mean plasma glucose

mRNA : Messenger RNAMS : Multiple sclerosisncRNA : Non coding RNAsNGF : Nerve growth factor

NHANES : National Health and Nutrition Examination SurveyNICE : National Institute for Health and Care Excellence

NMDA : N-methyl-D-aspartateNOS : Nitric oxide synthase

NPH : Neutral protamine hagedornOGTT : Oral glucose tolerance testOHAs : Oral hypoglycemic agents

OR : Odd Ratio.

PCOD : Polycystic ovarian disease
PCOS : Polycystic ovary syndrome

PGLs : Plasma glucose levels

PLC: Phospholipase c.

PTH : Parathyroid hormone

RCTs : Randomized controlled trials

RHI : Regular human insulin.

RNA : Ribonucleic acid

ROS : Reactive oxygen species

RR : Relative risk

SD : Standard deviation

SHPT : Secondary hyperparathyroidismSMBG : Self-monitoring of blood glucose

SOCE : Store-operated calcium entry

SPSS : Statistical Program for Social Science

STIM : Stromal interaction molecule

TH : Tyrosine hydroxylase
UL : Upper intake level.

UVB : Ultraviolet B radiationVBP : Vitamin binding protein

VDR : Vitamin D receptor

VDRE : Vitamin D responsive elements

Vitamin D: 1alfa,25(OH)2D

WHO: World Health Organization

1-OHase : 1-alfa hydroxylase **25-OHase** : 25-hydroxylase

7-DHC: 7-dehydrocholesterol.

List of Tables

Table No	. Title	Page	No.
Table (1):	Vitamin D forms and Structures		7
Table (2):	American Diabetes Association Classification	•••••	44
Table (3):	IADPSG recommendations	•••••	51
Table (4):	Comparison between patients and as regard anthropometric measu and age.	rements	
Table (5):	Comparison between patients and as regard to history		
Table (6):	Comparison between patients and as regard HbA1c%		
Table (7):	Comparison between patients and as regard maternal serum 25 (OH) D (ng/ml)	vitamin	-
Table (8):	Comparison between patients and as regard category of maternal se (OH) vitamin D (ng/ml)	rum 25	
Table (9):	Comparison between patients and as regard FPG and 2hr post prandblood glucose (mg/dl) at 24-28 pregnancy.	ial (PP) Bwk of	•
Table (10):	Comparison between patients and as regard oral glucose tolerand (mg/dl).	ce test	

Table (11):	Comparison between patients and control as regard Fasting insulin (mul/L), S. calcium (mg/dl), Hb% and Platelet (Iu/l)x10 ³
Table (12):	Relation between maternal serum 25(OH) vitamin D (ng/ml) and PCOS
Table (13):	Correlation between maternal serum 25(OH) vitamin D (ng/ml) and other parameters, using Pearson Correlation Coefficient in patients group
Table (14):	Correlation between maternal serum 25(OH) vitamin D (ng/ml) and other parameters, using Pearson Correlation Coefficient in control group
Table (15):	Diagnostic Performance of maternal serum 25(OH) vitamin D (ng/ml) in Discrimination of patients and control 133

List of Figures

Figure No	. Title	Page	No.
Figure (1):	The synthesis and fate of vitamin D		10
Figure (2):	Biological effects of Vitamin D	•••••	13
Figure (3):	Bony deformities in rickets		33
Figure (4):	Comparison between patients and c as regard age.		114
Figure (5):	Comparison between patients and c as regard anthropometric measurem		114
Figure (6):	Comparison between patients and c as regard GA and HbA1c%		116
Figure (7):	Comparison between patients and c as regard maternal serum 25 vitamin D (ng/ml).	(OH)	117
Figure (8):	Comparison between patients and c as regard category of maternal services (OH) vitamin D (ng/ml)	ım 25	118
Figure (9):	Comparison between patients and c as regard FPG and 2hr post prandia blood glucose (mg/dl)	1 (PP)	119
Figure (10):	Comparison between patients and c as regard oral glucose toleranc (mg/dl)	e test	120
Figure (11):	Comparison between patients and c as regard Fasting insulin (mul/l calcium (mg/dl) and Hb%	L), S.	122
	` • •		

Figure (12):	Comparison between patients and control as regard platelet
Figure (13)	Relation between maternal serum 25(OH) vitamin D (ng/ml) and PCOS 123
Figure (14):	Negative correlation and significant between maternal serum 25 (OH) vitamin D (ng/ml) and Height in patients 125
Figure (15):	Negative correlation and significant between maternal serum 25 (OH) vitamin D (ng/ml) and weight pre pregnancy in patients
Figure (16):	Negative correlation and significant between maternalserum 25 (OH) vitamin D (ng/ml) and BMI pre pregnancy in patients
Figure (17):	Negative correlation and significant between maternal serum 25 (OH) vitamin D (ng/ml) and HbA1c% in patients
Figure (18):	Negative correlation and significant between maternal serum 25 (OH) vitamin D (ng/ml) and FPG (mg/dl) during OGTT in patients
Figure (19):	Positive correlation and significant between maternalserum 25 (OH) vitamin D (ng/ml) and s. calcium in patients.
Figure (20):	Negative correlation and significant between maternal serum 25 (OH) vitamin D (ng/ml) and weight 3 months pregnancy in control group

Figure (21):	serum	25(Ol	H) vita	amin	Ď (ng	. 133
Figure (22):	25(OH)	vit	amin	D	(ng/ml	. 134

ABSTRACT:

Evidence is accumulating for a role of vitamin D in maintaining normal glucose homeostasis. However, studies that prospectively examined circulating concentrations of 25-hydroxyvitamin D (25-[OH] D) in relation to diabetes risk are limited. Our objective is to determine the association between maternal plasma 25-[OH] D concentrations in 26-29 weeks of pregnancy and the risk for gestational diabetes mellitus (GDM).

Our objective to determine the association between maternal 25(OH)D concentration in 26-29wk and the risk of GDM.

Method:case control study was conducted on 90 egyptian pregnant womens, 60 was GDM, 30 was control.

Result:

The data were statistically analysed and it is found that:

- The mean+SD vitamin D levels were 15.93+3.91 in GDM patient and 23.63+5.18 in control women.
- 25(oH)D insufficient in group 1 GDM was 18(30%), and in group 2 control 7(23.3%).
- 25(oH)D deficient in group 1 GDM 42(70%),and in group 2 control 7(32.5%).
- There was an egative correlation and significant between maternal serum 25(oH)D and weight prepregnancy P value=0.043,BMI P=0.042,HbAic P=0.005, fasting blood

glucose P=0.005,fasting insulin p=0.013 and HOMAIR p=0.026.and positive correlation and significant with serum calcium P=0.013.

Conclusion:there is statistically significant negative correlation between vitamin D level and glycemic control(FBS,HbAic) fasting insulin and HOMAIR,also there is a high prevalence of vitamin D deficiency and insufficiency in pregnant women.

KEY WORDE:

25(OH)D=25 hydroxy vitamin D,GDM=gestational diabetes mellitus,insulin R=insulin resistance.