Titrated Oral Misoprostol Compared to Vaginal Dinoprostone for induction of labor: A Randomized controlled trial

Thesis

Submitted in partial fulfillment of MD Degree in Obstetrics and Gynecology

Bγ Sherif Essam Mostafa Daoud

M.B.,B.CH., MS (OBST. & GYNECOLOGY)
A. Lecturer in OB/GYN Department
Ain Shams University Hospital

Under Supervision of

Prof. Ihab Hassan Abd El-Fattah

Professor of Obstetrics and Gynecology Head of the Obstetrics and Gynecology Dept. Faculty of Medicine – Ain Shams University

Prof. Karam Mohamed Bayoumy

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Amr Helmy Yehia

Assistant Professor in Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2017

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	v
Introduction and Aim of the Study	1
Introduction	1
Aim of the Work	4
Review of Literature	
The Uterus and Cervix	5
Induction of Labor	32
Prostaglandins	66
Patients and Methods	111
Results	124
Discussion	155
Summary	166
Conclusion	171
Recommendations	172
References	173
Arabic Summary	

List of Abbreviations

ACOG : American college of Obstetricians and

Gynecologists

AA : arachidonic acid

AROM : Artificial Rupture Of Membranes

BMI : Body Mass Index

CI Confidence Interval

Cm : Centimeter

COX-2 : Cycloxygenase-2

C.N.S Central Nervous System

CS : Cesarean section

CTG : Cardio Tocography

FHR Fetal Heart Rate

GTN : Glyceryl Trinitrate

hPGDS: Hematopoietic prostaglandin D synthases

HBsAg : hepatitis B surface antigen

hrs : Hours

IUGR : Intra Uterine Growth Restriction

IPGDS: lipocalin prostaglandin D synthases

μ**g** : Microgram

Mg : Milligram

ml : Milliliter

mU : Milliunit

min : Minutes

NICU : neonatal intensive care unit

NADPH: Nicotinamide Adenine Dinucleotide

Phosphate-Oxidase

NO : Nitric Oxide

NST : Non Stress Test

NSAIDs : non-steroidal anti-inflammatory drugs

PGF2 α : α Prostaglandins F2

PROM : Pre-Labor Rupture Of Membranes

PGFS: Prostaglandin F synthase

PGFS: Prostaglandin F synthase

PGE1 : Prostaglandins E1

PGE 2 : Prostaglandins E2

RCT : Randomized controlled trial

ROM : Rupture Of Membranes

SD : Standard Deviation

t : Student t-test

TXA : Thromboxane

TxAS: Thromboxane A synthase

TENS: transcutaneous nerve stimulation

TNF: Tumor Necrosis Factor

U/S : Ultrasonography

wks : Weeks

yrs : Years

List of Tables

Table N	o. Eitle	Page No.
Table (1): 1	Modified Bishop's Score	37
Table (2):	Intravaginal forms of dinoprostone	72
Table (3):	Recommended regimens for prosta E2 administration	•
Table (4):	Different routes of mis- administration	•
Table (5):	Demographic Data of Included Wom	nen 125
Table (6):	Indications for Induction of La Included Women	
Table (7):	Initial Bishop Score in Included Wor	men 129
Table (8):	Total Dose of Allocated Medication Groups	
Table (9):	Difference between Groups re Demographic Data	
Table (10):	Difference between Groups re Indications for Induction of Labor	•
Table (11) :	Difference between Groups regardin Bishop Score	•
Table (12) :	Difference between Groups re Duration of Labor	
Table (13) :	Difference between Groups re Delivery not achieved within 24 hou	

List of Tables (Cont...)

Cable No.	Eitle	,	Page C	No.
Table (14): Difference Process of L		_		143
Table (15):Difference b of Labor		1 0	U	146
Table (16): Difference Neonatal Ou		1	0 0	148
Table (17): Difference Maternal Sic		•	0 0	151

List of Figures

Figure No.	Citle	Page No.
Figure (1):	Stages of labor	19
Figure (2):	Cervical remodeling during pregna	ncy21
Figure (3):	Composite of normal cervical dilates fetal descent curves	
Figure (4):	Strucutrue of arachidonic acid	56
Figure (5):	Structure of misoprostol	82
Figure (6):	Measurment of Uterine activity	91
Figure (7):	Safe single doses of vaginal misoproduce uterine contractions	
Figure (8):	Flow of women through trial	124
Figure (9):	Bar-Chart showing Age Distribution Included Women	
Figure (10):	Pie-Chart showing Parity Distribution Included Women	
Figure (11):	Bar-Chart showing BMI Distribution Included Women	
Figure (12)	: Bar-Chart showing Gestations Distribution in Included Women	
Figure (13):	Pie-Chart showing Indication Induction of Labor in Included Wo	
Figure (14):	Pie-Chart showing Initial Bishop S Included Women	
Figure (15):	Box-Plot Chart showing Disbetween Groups regarding Age	

Figure (16): Box-Plot Chart showing Difference between Groups regarding Parity
Figure (17): Bar-Chart showing Difference between Groups regarding Parity
Figure (18): Box-Plot Chart showing Difference between Groups regarding BMI
Figure (19): Bar-Chart showing Difference between Groups regarding Obesity
Figure (20): Box-Plot Chart showing Difference between Groups regarding Gestational Age
Figure (21): Box-Plot Chart showing Difference between Groups regarding Indications for Induction of Labor
Figure (22): Box-Plot Chart showing Difference between Groups regarding Initial Bishop Score
Figure (23): Box-Plot Chart showing Difference between Groups regarding Duration of Latent Phase of the First Stage of Labor 139
Figure (24): Box-Plot Chart showing Difference between Groups regarding Duration of Latent Phase of the First Stage of Labor 139
Figure (25): Box-Plot Chart showing Difference between Groups regarding Duration of Active Phase of the First Stage of Labor 140
Figure (26): Box-Plot Chart showing Difference between Groups regarding Duration of the First Stage of Labor

Figure (27):	Box-Plot Chart showing Difference between Groups regarding Duration of the Second Stage of Labor	41
Figure (28):	Box-Plot Chart showing Difference between Groups regarding Induction-to- Delivery Interval	41
Figure (29):	Bar-Chart showing Difference between Groups regarding Delivery not achieved within 24 hours	42
Figure (30):	Bar-Chart showing Difference between Groups regarding Use of Epidural Analgesia	44
Figure (31):	Bar-Chart showing Difference between Groups regarding Rate of ARM	44
Figure (32):	Bar-Chart showing Difference between Groups regarding Rate of Augmentation of Labor	45
Figure (33):	Bar-Chart showing Difference between Groups regarding Rate of Uterine Hyperstimulation	45
Figure (34):	Bar-Chart showing Difference between Groups regarding Mode of Labor	47
Figure (35):	Box-Plot Chart showing Difference between Groups regarding Birth Weight 1	49
Figure (36):	Bar-Chart showing Difference between Groups regarding 5-min Apgar Score1	
Figure (37):	Bar-Chart showing Difference between Groups regarding NICU Admission	50
Figure (38):	Bar-Chart showing Difference between Groups regarding Shivering	52

Figure (39):	_	Difference arrhea	152
Figure (40):	_	Difference exia	153
Figure (41):	_	Difference tained Placer	153
Figure (42):	_	Difference tained Placer	154

Introduction

Induction of labor is defined as the process of artificially initiating uterine contractions, prior to their spontaneous onset, with progressive effacement and dilatation of the cervix and ultimately, the delivery of the baby (Martin et al., 2005).

There are many indications for induction of labor in the obstetric practice, of which prolonged gestational age stands as the most common indication. It is well recognized that with an unripe cervix, induction may be difficult and often unsuccessful. The use of an agent to ripen the cervix prior to induction is acceptable in the modern practice (*Josie*, 2003).

Induction of labor in the third trimester of pregnancy may be considered beneficial in many clinical circumstances. The risks include ineffective labor (failed induction), or excessive uterine activity which may cause fetal distress or uterine rupture (Wing et al., 2006). Either problem may lead to an increased risk of caesarean section. Unsuccessful labor induction is most likely when the cervix is unfavorable, and in this circumstance prostaglandin, preparations have proved to be beneficial. Those prostaglandins, which have been registered for cervical ripening and labor induction, are expensive and unstable and require refrigerated storage (Weeks et al., 2006).

Cervical ripening is associated with an increase in cyclooxygenase enzyme, which leads to local increase of prostaglandin production in the cervix. This in turn leads to a subsequent series of important changes associated with progressive cervical ripening (*Dede et al.*, 2004).

Misoprostol, a prostaglandin E_1 analogue, is the most interesting alternative to Dinoprostone because of its effectiveness, low cost, and temperature stability. It ripens the cervix by inducing regular uterine contractions. However, it is associated with several adverse effects especially uterine hyperstimulation, which is painful and may result in fetal compromise. These adverse effects are infrequent, dosedependent, and vary according to the route of administration (*Hofmeyr et al.*, 2001).

Current experience with misoprostol used for labor induction has been reviewed. Although in most studies, misoprostol seems to be at least as effective as conventional methods, widely varying dosage regimens and small numbers of women studied do not allow for adequate assessment of safety (*Shetty et al., 2005*). The widespread use of misoprostol in clinical practice, using arbitrary dosages and without registration or proper surveillance for adverse events is a cause for concern, as are reports of complications such as uterine rupture. Although most researchers and clinicians have chosen

the vaginal route for misoprostol administration, oral administration may have several advantages (Kolderup et al., 1999). Administration is easier and may be more acceptable to women. Absorption is more rapid and possibly more predictable. The reported mean peak serum misoprostol acid level following oral administration was 227 pg/ml after 34 minutes compared with 165 pg/ml after 80 minutes for the vaginal route. Vaginally absorbed serum levels are more prolonged. The shorter half-life when given orally may be advantageous in the event of uterine hyper stimulation. On the other hand, the direct local effect of vaginal misoprostol on cervical softening may be advantageous (Hofmeyr et al., 2010).

Based on the aforementioned facts, testing the efficacy and safety of titrated oral misoprostol versus vaginal dinoprostone may develop a new safe and effective method for labor induction.

Aim of the Work

To test the safety and efficacy of titrated oral misoprostol compared to vaginal dinoprostone for labor induction.