Uterine Artery Doppler and Placental Morphological Features as Predictors of Peripartum Complications in Placenta Previa and Placenta Previa Accreta.

Thesis

Submitted for Complete Fulfillment of The Master Degree (M.Sc.) in **Obstetrics and Gynecology**

By

Sara Ibrahim Abd-ElHady (M.B., B.Ch.)

Supervised By

Prof. Ahmed Hisham Mohamed

Professor of Obstetrics & Gynecology Faculty of Medicine, Cairo University

Dr. Hisham Mamdouh Haggag

Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 20 17

بسم الله الرحمن الرحيم

وَقُل رَّبِّ زِدْنِي عِلْمًا

صدق الله العظيم (الآية: ١١٤، سورة طه)

Acknowledgement

First of all, I am deeply thankful to **Allah** by the grace of whom this work was possible.

I wish to express my deepest gratitude to **Prof Ahmed Hisham Mohamed**, Professor of Obstetrics and Gynecology, Faculty of
Medicine, Cairo University, for his kind support and supervision. It
was by his continuous guidance that this work came to light.

Also, I would like to thank **Dr.Hisham Mamdouh Haggag**, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, for his great effort, continuous encouragement and his friendly attitude to complete this work.

Finally, I would like to thank my family for their encouragement, support and patience.

Sara Ibrahim

CONTENTS

	Page
•	Introduction1
•	Review of Literature
	o Anatomy of the Placenta 5
	o Placenta accreta prediction
	o Uterine artery Doppler
	 Management of placenta previa and placenta
	Previa accreta
•	Patients and Methods 71
•	Results YY
•	Discussion
•	Conclusion
•	Recommendations104
•	Summary 106
•	References 108
•	Arabic Summary134

List of Figures

Figure 1	Nutrients, wastes, and gases are exchanged between the mother's blood and the baby's blood.	Page 6
Figure 2	Cross section in Placenta at umbilical cord.	Page 7
Figure 3	A schematic drawing of a section through a full–term placenta.	Page 8
Figure 4	Total placenta previa.	Page 11
Figure 5	Types of placenta accreta.	Page 15
Figure 6	Gray-scale and color Doppler images illustrating criteria for the diagnosis of placenta accreta and its variants.	Page 23
Figure 7	Grayscale sonogram of placenta percreta.	Page 25
Figure 8	The trans pelvic ultrasound is from a pregnant 33-year-old female	Page 30
Figure 9	MRI of normal placental attachment	Page 33
Figure 10	Loss of the normal retroplacental clear space on ultrasonography.	Page 34
Figure 11	Uterine bulging into the bladder on MRI	Page 34
Figure 12	Placental bulge in placenta accreta in MRI.	Page 36
Figure 13	placenta accreta left intrauterine	Page 37
Figure 14	Normal systole and diastole in uterine artery.	Page 40
Figure 15	Different waves of uterine artery Doppler in non-pregnant woman	Page 40
Figure 16	Abnormal resistance index in uterine artery Doppler.	Page 41
Figure 17	NOTCHING with a normal resistance index in uterine artery.	Page 42
Figure 18	NOTCHING with an abnormal resistance index of uterine artery.	Page 42
Figure 19	B-Lynch suture.	Page 53
Figure 20	Diffrent intrauterine ballons	Page 54
Figure 21	Proximal component of tamponade balloons.	Page 55
Figure 22	Prophylactic balloon occlusion of the Internal iliac arteries in a patient with abnormal placentation.	Page 58
Figure 23	Prophylactic uterine artery embolization (UAE) in conservatively	Page 58

	managed placenta percreta.	
Figure 24	Work up scheme management in case of prenatal diagnosis of placenta accreta.	Page 61
Figure 25	Step 3 (Holding the cervix)in Matsubara technique	Page 64
Figure 26	Step 6 (M cross double ligation)in Matsubara technique	Page 64
Figure 27	Step 7-1 (Filling the bladder) in Matsubara technique	Page 65
Figure 28	Step 7-2 (Opening the bladder) in Matsubara technique	Page 65
Figure 29	(Double distal edge pick up) in Matsubara technique.	Page 66
Figure 30	Placenta percreta with bladder invasion at cesarean delivery.	Page 70
Figure 31	Relation between type of lacunae and CS hysterectomy.	Page 85
Figure 32	Correlation between type of lacunae and blood transfusion.	Page 86
Figure 33	Relation between type of lacunae and ICU admission.	Page 86
Figure 34	Relation between type of lacunae and preterm labour.	Page 86
Figure 35	Relation between type of placental vascularity and blood transfusion	Page 88
Figure 36	Relation between echo lucent area presence and blood transfusion.	Page 90
Figure 37	Correlation between uterine artery PI and CS hysterectomy	Page 92
Figure 38	Correlation between uterine artery PI and blood transfusion.	Page 93
Figure 39	Correlation between uterine artery PI and NICU	Page 93

List of Tables

Table 1	Reference intervals for mean uterine artery pulsatility index	Page 44
Table 2	Demographic data of the studied pregnant women	Page 78
Table 3	Different placental morphological features in the 3 groups	Page 79
Table 4	Maternal and fetal complications in the 3 groups.	Page 80
Table 5	Mean, SD, minimum and maximum of neonatal weight.	Page 80
Table 6	Median and range of apgar score in 1&5 min	Page 80
Table 7	The three groups of patients with different placental morphological features in relation to each other	Page 81
Table 8	peripartum complications in the different 3 groups.	Page 82
Table 9	Relation between peripartum complications neonatal birth weight and different 3 groups	Page 82
Table 10	Uterine artery PI& RI in relation to the 3 groups	Page 83
Table 11	Relation between lacunae and maternal mortality, CS hysterectomy, blood transfusion, NICU, neonatal death, bladder injury, ICU and preterm labour.	Page 84
Table 12	Relation between presence of lacunae and neonatal birth weight	Page 85
Table 13	Relation between presence of lacunae and apgar score in 1& 5 min.	Page 85
Table 14	Correlation between placental vascularity and maternal mortality, CS hysterectomy, blood transfusion, NICU, neonatal death, bladder injury, ICU and preterm labour.	Page 87
Table 15	Relation between placental vascularity and apgar score in 1& 5 min.	Page 88
Table 16	Relation between placental vascularity and neonatal birth weight	Page 88
Table 17	Relation between echolucent area presence and maternal mortality, CS hysterectomy, blood transfusion, NICU, neonatal death, bladder injury, ICU and preterm labour.	Page 89
Table 18	Relation between Echo lucent area	Page 90

	presence and apgar score in 1& 5 min.	
Table 19	Relation between echo lucent area presence and neonatal birth weight.	Page 90
Table 20	Correlation between PI of uterine artery	Page 91
	Doppler and maternal mortality, CS	
	hysterectomy, blood transfusion, NICU,	
	neonatal death, bladder injury, ICU and preterm labour.	
Table 21	Relation between PI of uterine artery	Page 92
	Doppler and IUGR and apgar score in 1&	- 4.64 / -
	5 min.	
Table 22	Relations between RI of uterine artery	Page 94
	Doppler and maternal mortality, CS	C
	hysterectomy, blood transfusion, NICU,	
	neonatal death, bladder injury, ICU and	
	preterm labour.	
Table 23	Relations between RI of uterine artery	Page 94
	Doppler and neonatal birth weight and	_
	apgar score in 1& 5 min.	
Table 24	Relations between bladder& uterine	Page 95
	interface distinction and maternal	_
	mortality, CS hysterectomy, blood	
	transfusion, NICU, neonatal death,	
	bladder injury, ICU and preterm labour.	
Table 25	Relations between bladder& uterine	Page 96
	interface distinction and apgar score in	-
	1& 5 min.	
Table 26	Relations between bladder& uterine	Page 96
	interface distinction and neonatal birth	
	weight	
Table 27	Correlation of different placental features	Page 96
	with 5 min apgar.	-

List of Abbreviations

IIA	Internal iliac artery
PPH	Postpartum hemorrhage
UAE	Uterine artery embolization
3DPD	Three D power Doppler
3DUS	3D ultrasound
RI	Resistive index
PI	Persistence index
PP	Placenta previa
PPA	Placenta previa accreta
UTA	Uterine artery

Abstract

Placenta previa and placenta previa accreta are considered serious pregnancy complications. Histopathological examination after hysterectomy is the gold standard for final diagnosis of placenta accreta, The use of ultrasonography for evaluation of placental morphology and Doppler flow pattern became very helpful tools in establish the diagnosis and prediction especially when used combined. The study was conducted on 30 cases of placenta previa + placenta previa accreta compared to 30 normal subjects. Results were statistically analyzed to show diagnostic value of such tool to confirm diagnosis and possible prediction of maternal and fetal outcome.

Keywords:

Placenta previa accreta Placenta previa accreta Uterine artery doppler

Introduction

Placenta previa and placenta previa accreta are severe pregnancy complications with maternal morbidity had been reported to occur in up to 60% and mortality in up to 7% of women with placenta accreta. In addition, the incidence of perinatal complications is also increased mainly due to preterm birth and small for gestational age fetuses (*Hudon et al.*, 1998; Eller et al., 2009).

Such abnormal placentation may be associated with massive and potentially life-threatening antepartum, intrapartum and postpartum hemorrhage (*Faranesh et al.*, 2007). The severe uterine hemorrhage may lead to the need of extensive life-saving surgical interventions such as hysterectomy and ligation of major pelvic vessels, placenta accreta has become the leading cause of emergency hysterectomy (*Daskalakis et al.*, 2007).

Several risk factors for placenta accreta have been reported including a previous cesarean delivery particularly when accompanied with a coexisting placenta previa, increasing numbers of prior cesarean deliveries exponentially increase the risk of placenta accreta (*Wu et al., 2005; Sivan et al., 2010*). Other predisposing factors have been identified including: scarred uterus, multiparity, previous uterine surgery, advanced maternal age, previous uterine curettage (*Miller et al., 1997*).

As a consequence of placental invasion to adjacent organs, reconstruction of the urinary bladder or bowel may be necessary. Massive blood and blood products transfusions are the rule in these dramatic cases. Other complications include neonatal death, infection, fistula formation & ureteral damage.

It is likely that antenatal diagnosis of placenta accreta has contributed to the overall drop in maternal morbidity and deaths that has been associated with this condition (*Eller et al.*, 2009; *Stafford and Belfort*, 2008). So it is important to make the diagnosis of placenta accreta prenatally because this allows effective management planning to minimize morbidity, this diagnosis is usually made by ultrasonography or magnetic resonance imaging (MRI).

Aim of work

The aim of this study was to investigate whether different placental morphological features and uterine artery Doppler can predict maternal and fetal outcome in pregnancies complicated with placenta previa and placenta accreta.

REVIEW OF LITERATURE

CHAPTER ONE

Anatomy of the Placenta

During its brief intrauterine existence, the fetus is dependent on the placenta for pulmonary, hepatic, and renal functions as it ensures CO2 and O2 exchange for the fetus, it delivers nutrients which the fetus needs to complete his growth, it also removes the waste products of the growing fetus, it has also a barrier function that prevents certain toxins and materials from reaching the fetus from maternal circulation (*Wang and Zhao*, 2010).

The placenta accomplishes these functions through its unique anatomical association with the mother.

Placenta has also an endocrine function as it produces many hormones that ensure a healthy pregnancy; it supports and promotes fetal growth. However, all these functions depend on normal vascular development within the placenta itself. Normal placental vascular development ensures a healthy pregnancy outcome, whereas insufficient or abnormal placental vascular development will compromise pregnancy outcomes both on the mother and the fetus. The functional unit of the placenta is the chorionic villus, which contains layers of syncytiotrophoblasts/cytotrophoblasts, villous stroma, and fetal vascular endothelium that separate maternal blood from the fetal circulation (*Wang and Zhao, 2010*).