

Ain Shams University Faculty of Women's for Arts, Science and Education Chemistry Department

Synthesis and Evaluation of Some Hydrophobically Modified Polyacrylamide Nanolatexes Using Novel Polymerizable Surfactants for Enhanced Oil Recovery

A Thesis
Submitted for
Ph.D. Degree of Science
In
Organic Chemistry

Presented by

El-Sayed Abd Al-Rahman El-Sayed El-Sharaky (MSc. Organic Chemistry, 2006)

Supervised by

Prof. Dr. Nadia G. Kandile Prof. of Organic Chemistry Faculty of Women Ain Shams University Prof. Dr. Ahmed M. Al Sabagh
Prof. of Applied Chemistry
Egyptian Petroleum Research Institute

Dr. Rasha Abd El-Azim El-Ghazawy
Ass. Prof of Polymer Chemistry
Egyptian Petroleum Research Institute

Ain Shams University Faculty of Women's for Arts, Science and Education Chemistry Department

Synthesis and Evaluation of Some Hydrophobically Modified Polyacrylamide Nanolatexes Using Novel Polymerizable Surfactants for Enhanced Oil Recovery

By El-Sayed Abd Al-Rahman El-Sayed El-Sharaky

Thesis Supervisors	Thesis approved
Prof. Dr. Nadia G. Kandile	
Prof. Dr. Ahmed M. Al Sabagh	
Prof. Dr. Rasha El-Ghazawy	

Head of Chemistry Department Prof. Dr. Fateen Zakaria

جامعــة عين شمس كليـــة البنــات للعلوم والآداب والتربية قسم الكيمياء

تخليق و تقييم بعض بوليمرات الأكريل أميد المعدلة المتناهية الصغر باستخدام مواد ذات نشاط سطحى مبتكرة قابلة للبلمرة و ذلك لتطبيقها في مجال رفع الحصيلة البترولية

رسالة مقدمه من

السيد عبد الرحمن السيد الشراقى ماجستير في العلوم - كيمياء عضوية 2008 م

للحصول علي درجة دكتوراه الفلسفه في العلوم (كيمياء عضوية)

تحت إشـــراف

أ.د/ أحمد محمد أحمد الصباغ الأستــاذ الكيمياء التطبيقية معهـــد بحوث البـترول أ.د/ نادية غريب قن ديل أست اذ الكيمياء العضوية كلية البنات - جامعة عين شمس

د/ رشا عبدالعظیم الغزاوی أستاذ مساعد كیمیاء البلمرات معهـــــد بحوث البترول

جامعة عين شمس كلية البنات للاداب والعلوم والتربيه قسم الكيمياء رســالة دكتوراة

اسم الطالب: السيد عبد الرحمن السيد الشراقي

عنوان الرسالـــة

" تخليق و تقييم بعض بوليمرات الأكريل أميد المعدلة المتناهية الصغر باستخدام مواد ذات نشاط سطحى مبتكرة قابلة للبلمرة و ذلك لتطبيقها في مجال رفع الحصيلة البترولية "

لجنة الأشراف

أ.د/ نادية غريب قن ديل أستاذ الكيمياء العضوية - كلية البنات - جامعة عين شمس أ.د/ أحمد محمد أحمد الصباغ أستاذ الكيمياء القطبيقية - معهد بحوث الهنترول د/ رشا عبدالعظيم الغزاوى أستاذ مساعد كيمياء الهلمرات - معهد بحوث الهنترول

لجنة الحكم والمناقشة

أ.د/ عبد الرحمن ناصر مختار أستـــاذ كيمياء البلمرات - كلية العلوم - جامعة الأزهر أبد محمود أحمد عبد الغفار أستــاذ كيمياء البلمرات _ المركز القومى للبحوث أ.د/ أحمد محمد أحمد الصباغ أستـاذ الكيمياء القطبيقية - معهد بحوث الهاترول أ.د/ نادية غريب قن ــديل أستـاذ الكيمياء العضوية - كلية البنات - جامعة عين شـمس

تاريخ البحث / /2013

تاريخ المنح / /2013

موافقة مجلس الكلية / / 2013 الدراسات العليا ختم الإجازة

موافقة مجلس الكلية / /2013

Acknowledgment

ACKNOWLEDGEMENT

I am in a greatest thankful to **ALLAH**, The Most Merciful, The Most Gracious, by the grace of whom the progress and success of the present work.

It is my pleasure to express my deepest thanks to *Prof. Dr. Nadia Gharib Kandile*, Professor of Organic Chemistry, Chemistry Department, Faculty of Arts, Science and Education Ain Shams University, for her kind supervision, valuable discussions, encouragement, careful revision of the manuscript and help given throughout this work.

It is my pleasure to express my deep thanks, appreciation and gratitude to *Prof. Dr. Ahmed M. Al-Sabagh*, Professor of Applied Chemistry, Director of Petroleum Research Institute (EPRI), for suggesting the topic of investigation, direct supervision, careful revision of the manuscript and his kind help given throughout this work.

My deep thanks and appreciation to *Dr. Rasha Abd El-Azim El-Gazawy*, Associate Professor of Polymer Chemistry, Petroleum Research Institute (EPRI), for her support, kind help, co-operation and valuable discussion.

My special thanks and gratitude to *Dr. Mahmoud Reyad Noor El-Din*, Associate Professor of Applied Chemistry, Petroleum Research Institute, for his kind help, encouragement and valuable discussion.

My deep thanks to all my professors, doctors and colleagues in the Egyptian Petroleum Research Institute, Petroleum Applications Department and Special Uses Lab. for support and help.

My deep thanks to my family *My Father*, *My Mother* and *My sisters* for supporting me in my life, and I would like to express my special thanks to *My Wife* for supporting me.

El-Sayed Abd Al-Rahman El-Sayed El-Sharaky

CONTENTS

List of Abbr	reviations	I
List of Table	es	II
List of Figu	res	III
Aim of the V	Vork	IX
Summary		X
Chapter I:	Introduction	1
	I.1- Hydrophobically Modified Polymers	
	(HM-Ps)	1
	I.1.1- Classification of HM-Ps	2
	I.1.1.1- Classification According to Localization of Hydrophobic Groups	2
	I.1.1.2- Classification According to Chemical Nature of Polymer Backbone	4
	I.1.1.3- Classification According to Synthetic Route	5
	I.1.3.2- Properties of HM-Ps	7
	I.1.3- Hydrophobically Modified Polyacrylamides (HM-PAMs)	13
	I.2- Polymerizable Surfactants (Surfmers)	15
	I.2.1- Benefits of Strong Attachment	15
	I.2.2- Classification of Surfmers	16
	I.2.2.1- Regarding The Position of The Polymerizable	
	Group	16
	I.2.2.2- Depending on The Nature of The Hydrophilic	
	Moiety	17
	I.3- Enhanced Oil Recovery(EOR)	20
	I.3.1- Thermal Flooding Processes	22

	I.3.2- Miscible Flooding Processes	23
	I.3.3- Microbial Flooding Processes	24
	I.3.4- Chemical Flooding Processes	25
	I.3.4.1- Polymer Flooding	25
	I.3- Literature Survey	32
Chapter II	Experimental	48
	II.1- Chemicals	48
	II.2- Instruments	49
	II.2.1- Mass Spectrometry (MS)	49
	II.2.2- FT-IR	49
	II.2.3- Proton and Carbon Nuclear Magnetic	
	Resonance (¹ H and ¹³ C NMR)	49
	II.2.4- Elemental Analysis	49
	II.2.5- Tensiometer	49
	II.2.6- Thermal Gravimetric Analysis (TGA)	49
	II.2.7- Kinematic Viscosity	50
	II.2.8- Gel Permeation Chromatography (GPC)	50
	II.2.9- Dynamic Light Scattering (DLS	50
	II.2.10- High Resolution Transmission Electron	
	Microscopy (HR-TEM)	50
	II.2.11- Dynamic Viscosity	50
	II.3- Methods of Preparation	51
	II.3.1- Preparation of Polymerizable Surfactants	
	(Surfmers)	51

II.3.1.1- Synthesis of Alkenylsuccinic Anhydrides	
(ASA)	51
II.3.1.2- Synthesis of Polyoxyethylene Alkenyl	
succinate Monoesters (Hemiesters (ASA-	
eo22s))	51
II.3.1.3- Synthesis of Polyoxyethylene Alkenyl	
succinate Diesters of Aliphatic Fatty Alcohols	
(A-AS-eo22s)	52
II.3.1.4- Synthesis of Acrylate Esters of Hemi (ASA-	
eo22Acs) and Diesters (A-AS-eo22Acs)	
(Surfmers)	52
II.3.2- Preparation of Hydrophobically Modified	
Polyacrylamides (HM-PAMs) and	
Polyacrylamide (PAM)	53
II.3.2.1- Preparation of HM-PAMs	53
II. 3.2.2- Preparation of PAM	53
II.4- Measurements	54
II.4.1- Surface Tension and CMC Determination for	
The Surfmers	54
II.4.2- Acid Value Titration Method	54
II.4.3- Molecular Weight Determination	54
II.4.4- Rheological Measurements	55
II.4.5- Surface and Interfacial Tension for PAM	
and HM-PAMs	56
II.4.6- Emulsification	56

Chapter III	Results and Discussion	57
III.1- Polymerizable Surfactants (Surfmers)		57
	III.1.1- Chemical Structure Justification of	
Polymerizable Surfactants (Surfmers) III.1.1.1- Preparation of Alkenylsuccinic Anhydrides		57
	(ASA)	59
III.1.1.2- Preparation of Polyoxyethylene Alkenyl		
	succinate Monoesters (Hemiesters (ASA-	
	eo22s))	59
III.1.1.3- Preparation of Polyoxyethylene Alkenyl		
	succinate Diesters of Aliphatic Fatty	
Alcohols (A-AS-eo22s)		61
III.1.1.4- Preparation of Acrylate Esters of Hemi		
	(ASA-eo22Acs) and Diesters (A-AS-	
	eo22Acs) (Surfmers)	61
III.1.1.5- Elemental Analysis of The Prepared Base, Hemiester, Diester and Surfmers		
		73
	III.1.1.6- Acid Value Titration Method of The	
Prepared Base and Hemiester		74
	III.1.2- Surface Active Properties and	
	Thermodynamic Parameters of The	
	Prepared Surfmers	75
III.2- Hydrophobically Modified Polyacrylamides		
	(HM-PAMs) and Their Corresponding	
	Unmodified Polyacrylamide (PAM)	90

III.2.1- Chemical Structure Justification of	
Hydrophobically Modified Polyacrylamides	
(HM-PAMs) and Their Corresponding	
Unmodified Polyacrylamide (PAM)	90
III.2.2- Thermal Gravimetric Analysis of The	
Prepared Polyacrylamide (PAM) and	
Copolymers (HM-PAMs)	103
III.2.3- Size of Microemulsion Droplets, Latex	
Particles and Latex Particles Morphologies	105
III.2.4- Molecular Weights of The Prepared Polymers	
(PAM) and Copolymers (HM-PAMs)	109
III.2.5- Solution Properties of The Polymer (PAM)	
and Copolymers (HM-PAMs)	113
III.2.5.1- Critical Association Concentration (C*) and	
Effect of Concentration on Apparent	
Viscosity (η_{app})	113
III.2.5.2- Effect of Added Salts	125
III.2.5.2.1- Effect of Sodium Chloride	
(Monovalent Cations)	125
III.2.5.2.2- Effect of Calcium Chloride	
(Divalent Cations)	129
III.2.5.3- Effect of Temperature	132
III.2.5.4- Effect of Shear Rate	136
III.2.5.5- Effect of Aging	140
III 2 5 6- Surface Interfacial Tension and	142

Emulsification Efficiency

	Conclusion	151
Chapter IV	References	153
	Arabic Summary	

List of Abbreviations

Abbreviation **Meaning** HM-Ps Hydrophobically Modified Polymers IOR Improved Oil Recovery HEUR Hydrophobically Ethoxylated Urethane HASE Hydrophobically Alkali Soluble or Swellable Emulsion HM-HEC Hydrophobically Modified Hydroxyethyl Cellulose **HM-PEO** Hydrophobically Modified Polyethylene Oxide HM-PAA Hydrophobically Modified Polyacrylic Acid HM-PAM Hydrophobically Modified Polyacrylamide Surfmer Polymerizable Surfactant **EOR Enhanced Oil Recovery** LPGs Liquefied Petroleum Gases **MEOR** Microbial Enhanced Oil Recovery **HPAM** Hydrolyzed Polyacrylamide HEC Hydroxyl Ethyl Cellulose HAP Hydrophobically Associating Polymer Critical Micelle Concentration **CMC** ASA Alkenyl Succinic Anhydride PAM Polyacrylamide

List of Tables

Critical Association Concentration

CAC

Table		Page
(1)	Characteristics of Different Polymer Structures	27
(2)	Chemicals Used Throughout The Investigation	48
(3)	The Elemental Composition of OSA, DDSA and ODSA Based	
	Series	73
(4)	Acid Values of Alkenylsuccinic Anhydrides and Their	
	Hemiesters	74
(5)	Surface Active Properties of The Prepared Surfmers	82
(6)	Thermodynamic Parameters of Micellization and Adsorption	
	and Structural Effects on Micellization and Adsorption for The	
	Prepared Surfmers	83
(7)	Abbreviations, Yield, Intrinsic Viscosities $[\eta]$ and Molecular	
	Weights of The Prepared HM-PAMs and PAM	112
(8)	Effect of Aging on The Apparent Viscosities of HM-PAMs	
	and PAM at 55 °C for 45 Days	141
(9)	The Stability of The Crude Oil Emulsions Formed by 0.5 g/dl	
	HM-PAMs and PAM Brine Solutions for 7 Days at 30 °C	150

Figure		Page
(1)	Schematic Illustration of The Structure of (a) Telechelic and	
	(b) Comb Like HM-Ps	3
(2)	Polymer Concentration Intervals: Dilute Regime (c <c*), semi<="" td=""><td></td></c*),>	
	Dilute Regime (c~c*) and Concentrated Regime (c>c*)	8
(3)	Schematic illustration of Hydrophobic-Association for HM-Ps,	
	(a) Intramolecular and (b) Intermolecular Associations	11
(4)	Schematic illustration of the HM-polymer solution viscosity as	
	a function of polymer concentration. a) HM-polymer and b)	
	unmodified polymer	12
(5)	Schematic Illustration of EOR Injection Methods	21
(6)	Polymer Flooding Process	26
(7)	The Scheme of Preparation for The Polymerizable Surfactants	
	(Surfmers)	58
(8)	Mass Spectroscopy of Octadecenylsuccinic Anhydride	
	(ODSA)	63
(9)	FT-IR Spectroscopy of Octadecenylsuccinic Anhydride	
	(ODSA)	64
(10)	¹ H NMR of ODSA-eo22 Hemiester	65
(11)	¹³ C NMR of ODSA-eo22 Hemiester	66
(12)	¹ H NMR of OD-ODS-eo22 Diester	67
(13)	¹³ C NMR of OD-ODS-eo22 Diester	68
(14)	¹ H NMR of ODSA-eo22Ac Surfmer	69
(15)	¹³ C NMR of ODSA-eo22Ac Surfmer	70
(16)	¹ H NMR of OD-ODS-eo22Ac Surfmer	71