Effect of Maternal Vitamin A status on Neonatal Kidney Size

Thesis Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Dr. Mohamed Ahmed Fouad Saad El-din

MBBCH- Faculty of Medicine – Ain Shams University (2004)

Supervisors

Prof. Dr. Ehab Khairy Emam

Professor of Pediatrics

Faculty of medicine –Ain Shams Univeristy

Prof. Dr. Karima Moustafa Maher

Professor of Radio-diagnosis

Faculty of medicine –Ain Shams University

Dr. Ahmad Mohammed Hamdy Saber

Lecturer of pediatrics
Faculty of medicine –Ain Shams University

Faculty of medicine Ain Shams University 2010

Acknowledgment

First of all, thanks to **Allah** the most merciful for guiding me through and giving me strength to complete this work.

It is a pleasure to express my deepest thanks and profound respect to my honored professor, *Professor Dr.* **Ehab Khairy Emam,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his continuous encouragement, and valuable supervision and guidance throughout this work. It has been an honor and a privilege to work under his generous supervision.

I am also deeply grateful and would like to express my sincere thanks and gratitude to **Dr. Karima Moustafa Maher,** Professor of Radio-diagnosis, Faculty of Medicine, Ain Shams University, for her great help and support.

Also, I wish to express my deep gratitude to *Dr. Ahmed Mohamed Hamdy Saber*, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for his kind support, help, careful supervision and his continuous guidance.

A lot of thanks for *Dr.Ghada Zaghloul Abbass Soliman*, Assistant professor of biochemistry in National Nutrition Institute for her great help.

No words could adequately express my deep appreciation to *my family*, especially *my parents* for their continuous support and guidance. I shall remain indebted to them all my life.

Special thanks to my patients, wishing them a happy and healthy life.

List of abbreviations

BC	Before Christ
BMI	Body mass index
Caco	Human colonic adenocarcinoma cells
CBC	Complete blood count
CRBP	Cellular retinol-binding protein
DNA	Deoxyribonucleic acid
GDNF	Glial cell-line-derived neurotrophic factor
HOXB	Homeobox B gene
HPLC	High-performance liquid chromatography
IOM	Institute of Medicine
<i>IU</i>	International unit
<i>IUGR</i>	Intrauterine growth restriction
LDL	Low density lipoprotein
LRAT	Lecithin retinol acyltransferase
MCH	Mean corpuscular hemoglobin
<i>MCHC</i>	Mean corpuscular <i>hemoglobin</i> concentration
MCV	Mean corpuscular volume
NHANES	Nutrition Examination Survey
NRC	National Research Council
PAX2	Paired box gene 2
RAR	Retinoic acid receptor
RAREs	Retinoic acid response elements
RBP	Retinol-binding protein
Ret	Ret
RNA	Ribonucleic acid
RXR	Retinoic X receptors
TTR	Transthyretin
UNICEF	United Nations Children's Fund
USDA	United states department of agriculture
VAD	vitamin A deficiency
VLDL	Very low density lipoprotein
WHO	World Health Organization

List of tables

Table	Title	Page
1	Selected animal sources of vitamin A	6
2	Selected plant sources of vitamin A (from beta-carotene)	7
3	Recommende Diatary Allowance for vitamin A Ug /d	9
4	Tolerable upper intake levels for vitamin A	9
5	Examples of genes stimulated or repressed by retinoic acid	22
6	Estimation of clinical and subclinical vitamin A deficiency in preschool children by WHO region	34
7	Clinical characteristics of mothers	86
8	Clinical signs of all mothers	87
9	CBC findings of mothers	87
10	Maternal vitamin A status (intake & serum level)	88
11	Clinical characteristics of all infants	90
12	CBC findings of all infants.	91
13	Cord serum retinol	91
14	parameters of infant renal size	93
15	Comparison between two the groups of mothers as regards to some demographic characteristics	94
16	Effect of maternal serum retinol level on clinical and laboratory data of the infant	95
17	Correlations between maternal serum retinol and some infants' data	97
18	Effect of maternal serum retinol level on neonatal kidney size	99
19	Correlation between maternal serum retinol and some infants' renal measures	103

List of figures

Figure	Title	Page
1	Structure of retinol and provitamin A carotenoids	5
2	central cleavage of ß-carotene	11
3	Schematic representation of vitamin A metabolism	19
4	Vitamin A mechanisms in gene regulation	23
5	Stages of kidney development	62
6	Development of permanent kidney	63
7	Range of blood pressure in pregnancy	78
8	Classification of newborns (both sexes) by intrauterine growth and gestational age	82
9	Maternal retinol intake	89
10	Maternal serum retinol	89
11	Cord serum retinol.	92
12	effect of maternal serum retinol status on cord serum retinol	96
13	Correlation between maternal serum retinol and cord serum retinol	98
14	Comparison between the 2 groups of mothers a regards their infant's kidneys size	100
15	Correlation between cord serum retinol and infant's right kidney size	102

List of abbreviations

Introduction

Vitamin A is an essential nutrient because of its important roles in vision, cellular differentiation, embryonic development, reproduction, growth, and the immune system. The need for vitamin A is particularly critical during periods of rapid growth and tissue development such as occur in pregnancy and early childhood; there is a slightly increased requirement during the third trimester of pregnancy, Serum retinol levels decline during pregnancy, especially during the third trimester, followed by a rapid increase postpartum. Hemodilution and inadequate nutritional status contribute to this pattern.

For a long while vitamin A deficiency was known to be prevalent only in children but recent studies have shown that it is also very common during pregnancy (*Vinutha et al ;* 2000) and so vitamin A supplementation during pregnancy is an important issue. The effect of vitamin A on kidney development and size in animals is well established but in human few data are available about this issue, this study try to prove this effect on human.

Aim of the work

- 1- Assesment of vitamin A status of sample of pregnant Egyption women.
- 2- Correlate between maternal vitamin A status with neonatal vitamin A.
- 3- Correlation between maternal vitamin A status with neonatal kidney

History:

The relationship of night blindness to a dietary deficiency was recognized as early as 1500 BC (Friedrich et al., 1988). In 1913, McCollum and Davis reported the presence of a lipid-like substance in butter and egg volk that was necessary for growth in rats (McCollum and Davis 1913). In 1916, the substance was named fat-soluble A. McCollum related fat-soluble A deficiency to xerophthalmia in children in the following year, providing the first indication of the diverse functionality of the vitamin (McCollum et al., 1917). The name, vitamin A, was first used in 1920 to signify the early discovery of the growth factor and to differentiate it from water-soluble vitamins, collectively called vitamin B at that time. The structure of vitamin A was determined in 1931. The vitamin A activity of β-carotene was demonstrated in 1929. The term "provitamin A" is accepted to differentiate carotenoid precursors of vitamin A from carotenoids without vitamin A activity. Plant carotenoids are, therefore, the precursor of vitamin A found in the animal kingdom. Dietary vitamin A is designated 'preformed vitamin A' when consumed as a dietary constituent of animal products. (Ronald et al., 2008)

Chemistry of vitamin A

Vitamin A is a fat-soluble vitamin that is essential for humans and other vertebrates. Vitamin A comprises a family of molecules containing a 20 carbon structure with a methyl substituted cyclohexenyl ring (beta-ionone ring) and a tetraene side chain with a hydroxyl group (retinol), aldehyde group (retinal), carboxylic acid group (retinoic acid), or ester group (retinyl ester) at carbon 15. The term vitamin A includes provitamin A carotenoids that are dietary precursors of retinol. The term retinoids refers to retinol, its metabolites, and synthetic analogues that have a similar structure. Carotenoids are polyisoprenoids, of which more than 600 forms exist. Of the many carotenoids in nature, several have provitamin A activity, but food composition data are available for only three (α -carotene, β -carotene, and β cryptoxanthin). The all-trans isomer is the most common and stable form of each carotenoid; however, many cis isomers also exist. Carotenoids usually contain 40 carbon atoms, have an extensive system of conjugated double bonds, and contain one or two cyclic structures at the end. (IOM, 2001)

Figure (1) structure of retinol and provitamin A carotenoids (George, 2009)

Sources of vitamin A

Retinol is found in foods that come from animals such as whole eggs, milk, and liver. Provitamin A carotenoids are abundant in darkly colored fruits and vegetables. The 2000 National Health and Nutrition Examination Survey (NHANES) indicated that major dietary contributors of retinol are milk, margarine, eggs, beef liver and fortified breakfast cereals, whereas major contributors of provitamin A carotenoids are carrots, cantaloupes, sweet potatoes, and spinach (*Harrison et al.*, 2005). Tables show some dietary sources of vitamin A and provitamin A carotenoids.

Table(1) shows Selected animal sources of vitamin A(USDA, 2004)

Food	Vitamin A (IU)*	%DV**
Liver, beef, cooked, 3 ounces	27,185	545
Liver, chicken, cooked, 3ounces	12,325	245
Milk, fortified skim, 1 cup	500	10
Milk, whole (3.25% fat), 1 cup	249	5
Cheese, cheddar, 1 ounce	284	6