FEASIBILITY OF R INTERRUPTER TECHNIQUE IN ASTHMATIC PRESCHOOL CHILDREN

Thesis

Submitted for partial fulfillment of Master Degree in Pediatrics

By

Ayat Saad Ahmed Hussein El-Maghraby

M.B.B.Ch-Faculty of Medicine-Cairo University

Under supervision of

Prof. Dr. Mona Mostafa El-falaky

Professor of pediatrics
Faculty of Medicine-Cairo University

Dr. Eman Hasan Draz

Lecturer of Pediatrics
Faulty of Medicine-Cairo University

Dr. Aliaa Adel Ali

Lecturer of Pediatrics
Faulty of Medicine-Cairo University

Faculty of Medicine Cairo University 2010

ABSTRACT

The incidence of pediatric asthma is increasing in most countries. Pulmonary function tests (PFTs) are used to determine asthma severity in preschool children, and are seldom performed in preschool children due to little cooperation, coordination. Interrupter resistance technique (Rint) is one of the easiest ways to assess respiratory resistance during tidal breathing with minimal subject cooperation. It has, therefore, been largely used in young children unable to perform reliable spirometry. The technique is good enough to allow assessment of bronchial reactivity.

The aim of this observational cross- sectional study is to assess the feasibility of performing interrupter resistance technique (Rint) in asthmatic preschool children as a noval technique which needs minimal cooperation in this young age group. Our results showed that only 18.8 % of children aged 2-3 years succeeded in performing the test, while 100 % of children aged above 3 years succeeded in performing the test.

Key Words:

(Asthma, Interrupter resistance technique, Preschool children)

Acknowledgement

First of all thanks to ALLAH, the source of all knowledge, who gave me the power by his abundant grace to produce this piece of work.

I wish to express my appreciation and sincere gratitude to **Prof. Dr. Mona Mostafa El-Falaky**, Professor of Pediatrics, Faculty of Medicine, Cairo University, for her kind help, advice, constant guidance, and encouragement.

I would like to thank **Dr. Eman Hassan Draz**, Lecturer of Pediatrics, Faculty of Medicine, Cairo University, for her care and support.

I would like to express my deep gratitude to Prof. **Dr. Aliaa Adel Ali**, Lecturer of Pediatrics, Faculty of Medicine, Cairo University, for her supervision, kind care, support, and honest advice.

I always feel grateful to all the Pulmonology Unit Staff for their help and cooperation.

Also I wish to thank my mother, my family, especially my nephew Islam Abdel-monem for their continuous support in life and in work.

Last but not least I would like to express many thanks to the patients who were involved in the study, and their parents. This work would have never been accomplished without them.

List of Abbreviations

ABD: Abdomen

ACQ: Asthma control questionnaire

ACT: Asthma control test

AHR: Airway hyperresponsiveness

Ar: Aragon

ASM: Airway smooth muscle

ATAQ: Asthma therapy assessment questionnaire

ATS: American thoracic society

BDR: Bronchodilator responsiveness

BHR: Bronchial hyperresponsiveness

BMI: Body mass index

C-ACT: Child-asthma control test

CDC: Centers for Disease Control and Prevention

CO2: Carbon dioxide

Crs: Respiratory system compliance

CV: Coefficient of variation

eNO: Exhaled nitric oxide

eNOS, (NOS3): Endothelial nitric oxide synthase

ERS: European thoracic society

ETS: Environmental tobacco smoke

EV: Extrapolated volume

FEF: Peak expiratory flow rate

FENO: Functional exhaled nitric oxide

FEV1: Forced expiratory volume in one second

FOT: Forced oscillation technique

FRC: Functional residual capacity

FVC: Forced vital capacity

GINA: Global initiative for asthma

He: Helium

H₂O_{2:} Hydrogen peroxide

IL-1β: Interleukin 1β

Irs: Inertance

kPa/L/sec: kilo paskal/ litre/second

MDC: Macrophage-derived chemokines

MEFVC: Maximal expiratory flow volume curve

N2: Nitrogen

nNOS: Neuronal nitric oxide synthase

NO: Nitric oxide

O2: Oxygen

OFCs: Oral food challenges

Pamb: The ambient pressure

Pdif: Pressure difference

PFTs: Pulmonary function tests

PH2O: The pressure of water vapor at body temperature

Pinit: Initial pressure

Pm: Mouth pressure

Ppb: Part per billion

RC: Rib cage

Rint: Interrupter resistance technique

Rrs: Respiratory system resistance

RSV: Respiratory syncytial virus

SBOL: Single breath on-line measurement

SF6: Sulfur hexa floride

SIDS: Sudden infant death syndrome

sRaw: Specific airway resistance

t: Time

TAA: Thoraco abdominal motion asynchrony

TARC: Thymus and activation-regulated chemokines

tE: Total expiratory time

TGV: Thoracic gas volume

Th2: T helper 2 lymphocytes

TLC: Total lung capacity

TMB: Tetramethyl benzidine

TNF-α: Tumour necrosis factor α

tPTEF: Time to peak tidal expiratory flow

Trs: Tidal time constant of the respiratory system

V: Flow

ΔV: Indicates the volume (pressure) swing by child's thoracic

excursion during tidal breathing in the box of

plethysmography

VC: Vital capacity

Ve: Expired tidal volume

VEGF: Vascular endothelial growth factor

Vpleth: Plethysmographic volume

Vptef: Volume at peak tidal expiratory flow

Zrs: Impedance

List of Tables

Table No	. Item	Page
Table (1): Factors Influencing the Development and Expression	10
	of Asthma	
Table (2): Classification of asthma severity by clinical feature		38
Table (3): Levels of Asthma Control in Children 5 Years and		40
	Younger	
Table (4): Basic Demographic and Clinical Data of the Studied		92
	Patients	
Table (5): Age Distribution among the Studied Patients	93
Table (6): Comparative Data between Failure & Success Rate of	97
	performing (Rint) as regard the Mean Age of Studied	
	Patients	
Table (7	Table (7): Age and Anthropometric Data according to Gender of	
	the Studied Patients	
Table (3): Comparative Data between 1st & 2nd set of pre-	100
	bronchodilator resistance measurement among the	
	studied patients	
Table (9): Mean values of Interrupter Resistance among	102
	Different Age Groups	
Table (1	Table (10): Comparison between Rint pre (pre-bronchodilator) &	
	Rint post (Post- bronchodilator) among the Forty-One	
	Studied Patients	
Table (11): Comparative Data between Male & Female Patients		115
	regarding their Pre-bronchodilator Resistance, and	

Post-bronchodilator Resistance			
Table (12): Comparative Data between Patients with different	119		
Degrees of Asthma Control Regarding their			
Resistance			
Table (13): Comparison between Atopic and non Atopic Patients	120		
regarding their Resistance			
Table (14): Comparison between Patients with High & Normal	121		
IgE regarding their Pre- bronchodilator Resistance			
Table (15): Comparative Data between Family History of Asthma			
& Pre-bronchodilator Resistance of the Studied			
Patients			
Table (16): Comparison between Rint pre Measurements in	127		
Relation to Family History of Atopic Manifestation			

List of Figures

Figure No Item		Page
Fig (1): Asthma prevalence and mortalit	у	6
Fig (2): Airway inflammation and remodeling in asthma		32
Fig (3): a 3-year-old child in the whole-b	ody plethysmograph	48
Fig (4): Schematic illustration of se multiple breath washout technic	•	54
Fig (5): A typical arrangement of timpedance measurement	the forced oscillatory	57
Fig (6): Off-line tidal breathing using ni preschool children	tric oxide technique in	62
Fig (7): Tidal expiratory flow indices		65
Fig (8): Thoraco motion Asynchrony (phase angle analysis)		67
Fig (9): Paradoxical breathing movements by TAA		68
Fig (10): Unilateral diaphragmatic paraly	ysis by TAA	69
Fig (11): Schematic description of the pressure–time curve of interrupter resistance technique		72
Fig (12): Schematic picture of the eq interrupter technique	uipment used for the	73
Fig (13): Measurements of baseline inte bronchodilator responsiveness	•	75
Fig (14): Measurement conditions of Rin and the operator's hands during	-	76
Fig (15): Illustration showed the technique	interrupter resistance	84
Fig (16): Mouth pressure (Pmo)-time cub) unacceptable	rve.a) Acceptable; and	86
Fig (17): Age Distribution among the stu	udied patients	93
Fig (18): Sex Distribution among the studied patients		
Fig (19): Sex Distribution according Studied Patients	to Mean Age of the	95
Fig (20): Distribution of patients acco	ording to success and	

the studied patients Fig (25): Correlation between age and Rint among the 41 studied patients Fig (26): Correlation between height and Rint among the 41 studied patients	6 7 9 01
(month) in Failure and Success of Performing the Rint Fig (22): Success of performing of Rint among different age group Fig (23): Distribution of success & failure among male and female patients Fig (24): Comparison between Rint pre1 & Rint pre2 among the studied patients Fig (25): Correlation between age and Rint among the 41 studied patients Fig (26): Correlation between height and Rint among the 41 studied patients	7 9 01 03
Fig (23): Distribution of success & failure among male and female patients Fig (24): Comparison between Rint pre1 & Rint pre2 among the studied patients Fig (25): Correlation between age and Rint among the 41 studied patients Fig (26): Correlation between height and Rint among the 41 studied patients	9 01 03
female patients Fig (24): Comparison between Rint pre1 & Rint pre2 among the studied patients Fig (25): Correlation between age and Rint among the 41 studied patients Fig (26): Correlation between height and Rint among the 41 studied patients	01 03
the studied patients Fig (25): Correlation between age and Rint among the 41 studied patients Fig (26): Correlation between height and Rint among the 41 studied patients	03
studied patients Fig (26): Correlation between height and Rint among the 41 studied patients	
studied patients	0.4
	04
Fig (27): Correlation of weight and Rint among the 41 studied patients	05
Fig (28): Correlation of Age with Rint Measurements among the Studied Twenty Patients Who Performed Two Sets of Pre-bronchodilator Measurements	06
Fig (29): Height Correlation among the Studied Patients with their Rint Who Performed Two Sets of Prebronchodiator Resistance Measurements	07
Fig (30): Correlation between Weight and Rint pre among the Twenty Patients Who had Performed Rint pre Twice	08
Fig (31): Comparison of 1 st pre-bronchodilator resistance (Rint pre1) among studied patients as regard their Gender	09
Fig (32): Comparative Data between 1st Pre-bronchodilator (Rint pre1) & 2 nd Pre-bronchodilator Resistance (Rint pre2) among Female Patients	10
Fig (33): Comparative Data between 1st Pre-bronchodilator Resistance (Rint pre 1) & 2nd Pre-bronchodilator Resistance (Rint pre 2) among Male Patients	11
Fig (34): Comparison between pre-bronchodilator and post- bronchodilator resistance among the 41 studied patients	13

Fig (35): Comparison between Rint pre and Rint post among the Thirty-Two Studied patients who had Decreased Resistance after Bronchodilator administration	114
Fig (36): Comparison between pre and post-bronchodilator resistance among female Patients	116
Fig (37): Comparison between pre-bronchodilator and post- bronchodilator resistance among male patients	117
Fig (38): Distribution of Patients regarding their Degree of Asthma Control	118
Fig (39): Comparison between Patients with Normal & High IgE regarding their Pre-bronchodilator Resistance (Rint pre)	121
Fig (40): Correlation between IgE and pre-bronchodilator resistance (Rint pre) results among the studied patients	122
Fig (41): Comparison between atopic and non atopic patients according to IgE level (lu/Ml)	
Fig (42): Comparison between patients with high and normal eosinophil count regarding their resistance	124
Fig (43): Correlation between eosinophil level and resistance among the studied patients	125
Fig (44): Comparison between Atopic and non Atopic Patients regarding to Eosinophil Count	126

Contents

	Page
Introduction	
Aim of the Work	4
Review of Literature	
Bronchial Asthma in Children	5
Pulmonary Function Tests in Preschool Children	44
Patients and Methods	
Results	92
Discussion	128
Summary	
Conclusions	
Recommendations	158
References	160
Arabic Summary	

INTRODUCTION

The incidence of pediatric asthma is increasing in most countries. Pulmonary function tests (PFTs) are used to diagnose and determine asthma severity, along with clinical symptoms and medication requirements (*Beydon et al, 2003*).

Long-term cohort studies have established that PFT results in children with asthma are correlated with asthma severity and with pulmonary function impairement in adulthood (*Rasmussen et al*, 2002).

Normal lung function is one of the goals of asthma management in international guidelines (*British Thoracic Society*, 2003).

Forced expiratory maneuvers are used in school children and in adults. However, preschool children may be too young to perform acceptable and reproducible forced expiratory maneuvers (*Vilozni et al, 2001*).

The realisation that insults to the developing lung may have life-long effects and that much of the burden of respiratory disease in childhood and later life has its origins in infancy and early childhood has emphasized the need to develop and standardise sensitive methods of assessing respiratory function in infants and young children (*Frey et al, 2000 (a) and Stocks et al, 2000*).

It is difficult to obtain reliable lung function testing in preschool children because little cooperation and coordination can be expected at this age. Spirometric reference values for children have been obtained in children as young as 5 years of age but reliable measurements are often not feasible (*Peter et al, 2001*).

In recent years, PFTs that do not require active cooperation, such as the interrupter resistance technique or forced oscillation technique, have been evaluated for estimating airflow resistance in healthy (*Lombardi et al, 2001 and Malmberg et al, 2002*) and in preschool children who have asthma or who are wheezing (*Nielsen et al, 2001 and Delacourt et al, 2001a*).

The measurement of airway resistance by the interrupter method (Rint) has been developed by a number of groups for clinical use and as a research tool. The method is particularly suitable for subjects who cannot undertake standard lung function tests, such as preschool children and school children who are unable to undertake spirometry (*Bridge et al, 1999 & Bridge and McKenzie, 2001a*).

The ability to monitor the progress of lung disease and to measure the effect of therapeutic intervention in these groups is quite limited (*McKenzie et al, 2002*). Much is already known about the technical aspects of the measurement of Rint, and its repeatability in young children (*McKenzie et al, 2001a*).

The interrupter technique is a non invasive simple technique for estimating flow resistance, an important determinant of lung function, especially in children too young to accomplish forced respiratory maneuvers in a reproducible manner. The interrupter technique is easy to use in young children. Several recent studies used interrupter resistance (Rint) measurements in wheezy and / or

asthmatic young children, particularly for testing bronchoreactivity (McKenzie et al, 2000 & Beydon et al, 2001).

Modern applications of the technique have been evaluated (*Phagoo et al, 1996*), and it has been demonstrated that withinsubject variability of Rint measurements is sufficiently small to study the response to bronchoconstricting (*Phagoo et al, 1996*) and bronchodilating agents in young children (*Bridge et al, 1999*).