ANESTHETIC MANAGEMENT OF SICKLE CELL DISEASE

Essay
Submitted for Partial Fulfillment of
Master Degree in Anesthesiology

By

MARY ABDOU ATTIEA DOMYAN M.M.B.CH

Supervised by

Prof. / Hoda Omar Mahmoud Ali

Professor of Anesthesiology & Intensive Care Medicine Faculty of Medicine –Ain Shams University

Dr. / Fahmy Saad Latif Eskandar

Assistant Professor of Anesthesia & Intensive Care Medicine Faculty of Medicine –Ain Shams University

Dr. / Dalia Abd El-Hamid Mohamed Nasr

Assistant Professor of Anesthesia& Intensive Care Medicine Faculty of Medicine –Ain Shams University

Faculty of Medicine

Ain Shams University 2010

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Hoda Omar Mahmoud Ali, Professor of Anesthesiology and Intensive Care for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. Fahmy Saad Latif Eskandar, Assistant Professor of Anesthesiology and Intensive Care for his sincere efforts, fruitful encouragement.

I am deeply thankful to Dr. Dalia Abd El-Hamid Mohamed Nasr, Assistant Professor of Anesthesiology and Intensive Care for her great help, outstanding support, active participation and guidance.

Mary Abdou Attiea Domyan

List of Contents

	Title	Page No.
	Introduction	1
•	Aim of the Work	3
•	Physiology of Oxygen Transport	4
•	Physiology of Hemoglobin	23
•	Pathophysiology of Sickle Cell Disease	33
•	Anesthetic Management of Sickle Cell Disease	58
•	Intraoperative Management of Sickle Cell Disease	80
•	Management of Postoperative Complications	94
•	Summary	108
•	References	113
•	Arabic summary	

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Shunt occurs when deoxygenated venous by the body passes unventilated alveoli to e pulmonary veins and the systemic arteria with an unchanged PO2 (40 mmHg).	enter the al system
Fig. (2):	The sigmoid shape of hemoglobin's dissociation curve results from cooperative by oxygen to hemoglobin	oinding of
Fig. (3):	Oxygen delivery	19
Fig. (4):	Hemoglobin (Hb or Hgb)	23
Fig. (5):	Heme group	24
Fig. (6):	Oxygen binding to hemoglobin (cooperative t	type)29
Fig. (7):	Sickled red blood cells	33
Fig. (8):	Autosomal Recessive Inheritance of sidisease	
Fig. (9):	Pathology of Sickle cell disease	41
Fig. (10):	Pathophysiology of Sickle cell disease	43

List of Tables

Table No.	Title	Page No.
Table (1):	Factors shifting curve	11
Table (2):	Principle stores of oxygen in the body	21
Table (3):	Clinical Indications for RBC Transfusi Adults and Children with SCD	

List of Abbreviations

a a DDC	
2,3 DPG	2,3 diphosphoglycerate
ACS	Acute chest syndrome
ANF	Avascular necrosis of head of femur
BNP	Biomarker pro-brain natriuretic peptide
EDRF	Endothelium derived relaxing factor
EPO	Erythropoietin
ET-1	Endothelin-1
FDA	Food and Drug Administration
Fe^{+2}	Ferrous
Fe+3	Ferric
FRC	Functional residual capacity
HbA	Adult hemoglobin
HBAs	Heterozygous type of sickle cell disease (sickle cell trait)
Hbf	Fetal hemoglobin
HbS	Sickle cell hemoglobin
HBS/B+	Sickle beta plus thalassaemia
HBS/Bº	Sickle betazero thalassaemia
HbSc	Heterozygous type of sickle cell disease with one sickle gene and another encoding hemoglobin (C) (sickle hemoglobin c disease)
Hbss	Homozygous type of sickle cell disease (sickle cell anemia)

HPLC	High performance liquid chromatography
HSCT	Hematopoietic stem cell transplantation
Hu	Hydroxyurea
IUGR	Intrauterine growth fretardation
Kpa	Kilo pascal
MgSo4	Magnesium sulphate
NO	Nitric oxide
NOS	Nitric oxide synthetase
NSAIDS	Nonsteroidal anti-inflammatory drugs
OSA	Obstructive sleep apnea
P50	Partial pressure of oxygen in arterial blood at which hemoglobin is 50 % saturated
PAH	Pulmonary artery hypertension
PAo2	Partial press use of alveolar oxygen
Pao2	Partial pressure of oxygen in arterial blood
SCD	Sickle cell disease
SO2	Oxygen saturation
TCD	Transcranial Doppler
Vo2	Oxygen consumption
VOC	Vasoocclusive crisis

Introduction

vickle Cell disease is congenital hemoglobinopathy Characterized by deformed red blood cells, acute episodic attacks of pain and pulmonary compromise, wide damage, and early death. The central spread organ pathological event has traditionally been assumed to be an increase in sickling or deformation of erythrocytes as a result of the insolubility of the deoxygenated mutant sickle hemoglobin (hemoglobin S), while acute pain pulmonary complications often have no clear identifiable causes. The preoperative period is a well recognized and predictable time of disease exacerbations.

Sickle disease high incidence Cell have **Traditional** preoperative complication. anesthetic management depend largely on avoidance of red sickling to prevent exacerbation of the disease by preemptive erythrocyte transfusion, aggressive hydration and avoidance of hypoxia, hypothermia and (Steinberg, 1999).

A contemporary publication of series of 604 cases noted a rate of acute sickle cell disease exacerbation of approximately 15% with morality rate of 0.3% was mostly due to preoperative hypoxia, hypo- perfusion and acidosis

which cause erythrocyte to sickle which precipitate vascular occlusion and organ dysfunction (Vinchinsky et al., 1995).

Also patient of sickle cell disease complaining from psychological distress due to effect of chronic, incurable, incompletely understood lethal disease (Vinchinsky et al., *1999*).

Aim of the Work

s to discuss the pathophysiology of sickle cell disease Lincluding signs, symptoms, Anesthetic management including preoperative - intraoperative and postoperative management and management of its complications.

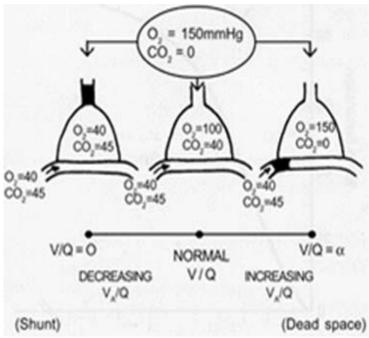
Physiology of Oxygen Transport

In order to survive humans have to be able to extract oxygen from the atmosphere and transport it to their cells where it is utilized for essential metabolic processes. Some cells can produce energy without oxygen (anaerobic metabolism) for a short time, although it is inefficient. Other organs (e.g. brain) are made up of cells that can only make the energy necessary for survival in the presence of a continual supply of oxygen (aerobic metabolism). Tissues differ in their ability to withstand anoxia (lack of oxygen). The brain and the heart are the most sensitive. Initially a lack of oxygen affects organ function but with time irreversible damage is done (within minutes in the case of the brain) and revival is impossible.

Oxygen transport from Alveolus to blood

Blood returning to the heart from the tissues has a low PO2 (40 mmHg) and travels to the lungs via the pulmonary arteries. The pulmonary arteries form pulmonary capillaries, which surround alveoli. Oxygen diffuses (moves through the membrane separating the air and the blood) from the high pressure in the alveoli (100 mmHg) to the area of lower pressure of the blood in the pulmonary capillaries (40 mmHg). After oxygenation blood

moves into the pulmonary veins which return to the left side of the heart to be pumped to the systemic tissues. In a 'perfect lung' the PO2 of pulmonary venous blood would be equal to the PO2 (partial pressure of oxygen) in the alveolus. Three factors may cause the PO2 in the pulmonary veins to be less than the PAO2 (alveolar partial pressure of oxygen) ventilation/perfusion mismatch, shunt and slow diffusion (*Treacher et al.*, 1998).


Ventilation/perfusion mismatch

In a 'perfect lung' all alveoli would receive an equal share of alveolar ventilation and the pulmonary capillaries that surround different alveoli would receive an equal share of cardiac output ie. Ventilation and perfusion would be perfectly matched. Diseased lungs may have marked mismatch between ventilation and perfusion. Some alveoli are relatively overventilated while others are relatively overperfused (the most extreme form of this is shunt where blood flows past alveoli with no gas exchange taking place. Well ventilated alveoli (high PO2 in capillary blood) cannot make up for the oxygen not transferred in the underventilated alveoli with a low PO2 in the capillary blood. This is because there is a maximum amount of oxygen which can combine with hemoglobin. The pulmonary venous blood (mixture of pulmonary capillary

blood from all alveoli) will therefore have a lower PO2 than the PO2 in the alveoli (PAO2). Even normal lungs have some degree of ventilation/perfusion mismatch; the upper zones are relatively overventilated while the lower

zones are relatively overperfused and underventilated

(Hameed et al., 2003).

Fig. (1): Shunt occurs when deoxygenated venous blood from the body passes unventilated alveoli to enter the pulmonary veins and the systemic arterial system with an unchanged PO2 (40 mmHg). Atelectasis (collapsed alveoli), consolidation of the lung, pulmonary oedema or small airway closure will cause shunt (*West et al.*, 1990).

O2= oxygen. Co2=Carbon dioxide.

V= ventilation. Q= perfusion.

Oxygen carriage in blood

The oxygen-hemoglobin dissociation curve:

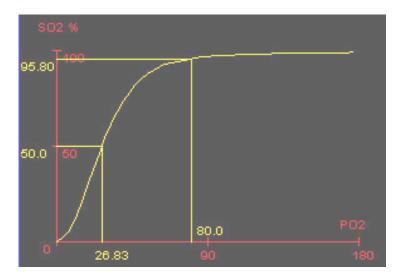


Fig. (2): The sigmoid shape of hemoglobin's oxygen-dissociation curve results from cooperative binding of oxygen to hemoglobin (Guyton et al., 2006).

Oxygen-hemoglobin dissociation curve, is important tool for understanding how our blood carries and Specifically, the releases oxygen. oxy-hemoglobin dissociation curve relates oxygen saturation (SO₂) and partial pressure of oxygen in the blood (PaO₂), and is determined by what is called "hemoglobin's affinity for oxygen"; that is, how readily hemoglobin acquires and releases oxygen molecules into the fluid that surrounds it.

Hemoglobin, globular protein, is the primary vehicle for transporting oxygen in the blood. Oxygen is also carried