Comparative Study between Contrast Enema Findings and Rectal Biopsy in the Diagnosis of Hirschsprung's Disease

Thesis

Submitted for partial fulfillment of Master Degree in General Surgery

By

Mahmoud Marei Abdelaziz (M.B., B.Ch.)

Supervisors

Dr. *Montasser M. Elkottbi*Professor of General and Pediatric Surgery
Cairo University

Dr. Hesham Mohamed Elsaket
Professor of General and Pediatric Surgery
Cairo University

Dr. Ayman Hussien Abdelsattar
Lecturer of General and Pediatric Surgery
Cairo University

Faculty of Medicine Cairo University

2010

ACKNOWLEDGEMENT

My deepest gratitude is to Prof. Dr. Montasser Elkottbi, Professor of Pediatric and General Surgery and Head of the Pediatric Surgery Department, Cairo University. It was through his guidance and support that this work was achieved. He spared no effort for providing supervision, help, guidance and support throughout this work.

I am profoundly grateful to Prof. Dr. Hesham Elsaket, Professor of General and Pediatric Surgery, Cairo University for his great assistance and sincere help.

Also, I would like to express my special thanks to Dr.

Ayman Hussien Abdelsattar, Lecturer of General and

Pediatric Surgery, Cairo University for his sincere efforts to
accomplish this work.

I am profoundly indebted to all the members of the department of pediatric surgery, Cairo University; to all my professors, mentors and colleagues for their continuous support and encouragement.

DEDICATION

This work is dedicated with affection to my Family...

LIST OF ABBREVIATIONS

AChE	: Acetylcholine esterase enzyme
BE	: Barium enema
CAM	: Cellular Adhesion Molecular
CE	: Contrast enema
DPM	: Delayed passage of meconium
ECM	: Extracellular Matrix
EDN	: Endothelins
ENS	: Enteric nervous system
GDNF	: Glial-derived neurotropic factor
GFR	: Glycosyl-phosphatidyl-inositol-anchored binding component
HD	: Hirschsprung's disease
IASNA	: Internal Anal Sphincter Neurogenic Achalasia
IC	: Idiopathic constipation
ICCs	: Interstitial cells of Cajal
ID	: Intestinal dysganglionosis
IND	: Intestinal neuronal dysplasia
MEN	: Multiple endocrinal neoplasia syndrome
NANC	: Nonadrenergic noncholinergic autonomic nerves
NC	: Neural crest
NO	: Nitric oxide
NTN	: Neurturin
UHD	: Ultrashort segment Hirschsprung's disease
WSCE	: Water-soluble contrast enema

LIST OF FIGURES

Fig.	Title	Page
1	GDNF-Ret receptor signaling system	11
2	Potential Mechanisms for the Pathogenesis of Hirschsprung's	
	disease	12
3	Overview of the Parts of the Colon	17
4	The sigmoid colon	21
5	The Anal Canal	22
6	The Spaces and Fasciae around the Anus and Rectum	24
7	Lining of the Surgical Anal Canal	26
8	Diagram of the Pelvic Diaphragm from below	27
9	Neural Control of the Gut Wall	29
10	Innervation of the Colon and Rectum	31
11	Diagrammatic cross-sections of the wall of the small intestine and	
	the large intestine	34
12	The Extrinsic Innervation of the Large Intestine	36
13	Microstructure of the large intestinal smooth muscle cell	40
14	Radiological findings of Hirschsprung's disease	61
15	Nonspecific findings in contrast enema	62
16	Positioning and Specimen Collection of Rectal Biopsy	68
17	Histopathology of Hirschsprung's disease	68
18	Acetylcholinesterase (AChE) reaction in a suction biopsy of rectal	
	mucosa	69
19	Swenson's Procedure	85
20	Port placement in laparoscopic management of Hirschsprung's	
	disease	88
21	Mean age at diagnosis (in days) of the studied groups	105
22	Age at diagnosis of the studied groups (in days)	106
23	Delivery mode in the studied groups	107
24	Maturity in the studied groups	107
25	Consanguinity in the studied groups	109
26	Clinical presentations in the studied groups	110

Fig.	Title	Page
27	Intestinal obstruction, incidence in the control group	111
28	Intestinal obstruction, incidence in the patient group	112
29	Preoperative Enterocolitis in the studied groups	113
30	General examination in the control group	114
31	General examination in patient group	114
32	Abdominal distension in control group	115
33	Abdominal distension in patient group	115
34	Rectal examination in the control group	116
35	Rectal examination in the patient group	116
36	Radiological examinations in the studied groups	117
37	Radiological examinations in the studied groups	118
38	Level of aganglionosis in patient group	119
39	Accuracy of diagnosis in control group	120
40	Accuracy of diagnosis in patient group	120
41	Type of surgery in patient group	121
42	Postoperative complications in the patient group	123

LIST OF TABLES

Table	Title	Page
1	Changes in lining of the surgical anal canal at the pectinate line	26
2	Comparison of the level of aganglionosis in the largest six	
	published series	52
3	Sensitivity and Specificity of the various noninvasive diagnostic	
	clinical parameters	58
4	Sensitivity and Specificity of each of the studied radiological signs	
	in contrast enema	63
5	Diagnostic Scoring System	63
6	Mean age at diagnosis of the studied groups (in days)	104
7	Age at diagnosis of the studied groups (in days)	105
8	Sex distribution in the studied groups	106
9	Mean age at operation (months) of the studied groups	106
10	Perinatal history in the studied groups	107
11	Perinatal history in the studied groups	108
12	Consanguinity in the studied groups	108
13	Clinical presentations in the studied groups	109
14	Mean age (in days) for intestinal obstruction in the patient group	110
15	Intestinal obstruction. incidence in the studied groups	111
16	Preoperative Enterocolitis in the studied groups	112
17	Postoperative Enterocolitis in the patient group	112
18	General examination in the studied groups	113
19	Abdominal examination in the studied groups	114
20	Rectal examination in the control group	115
21	Rectal examination in the patient group	116
22	Radiological examinations in the studied groups	117
23	Sensitivity, specificity, positive and negative predictive values of	
	the radiological examination in patient group	118
24	Level of aganglionosis in patient group	118
25	Accuracy of diagnosis in the studied groups	119

Table	Title	Page
26	Sensitivity, Specificity, Positive and Negative predictive values of	
	the accuracy of radiological examination in patient group	119
27	Type of surgery in patient group	120
28	Histopathology in the studied groups	121
29	Histopathology in the patient group	121
30	Sensitivity and Specificity of histopathology in studied groups	122
31	Postoperative complications in the patient group (n= 26)	122
32	Anorectal manometry in the studied groups	123

CONTENTS

	Page
Acknowledgement	
List of Abbreviations	
List of Figures	
List of Tables	
Introduction	1
Aim of the Work	4
Review of Literature:	
Incidence	5
Normal Embryology of Enteric Nervous System (ENS)	6
Molecular Genetics	9
Genetic Counseling	15
Anatomy of the Large Intestine and Anorectum:	17
 Parts of the large intestine 	17
The Anorectum	21
 Pelvic diaphragm and continence 	27
 Nerve supply of the large intestine 	28
Histology of the Large Intestine and Anorectum	37
Physiology of the Large Intestine:	41
 Colonic motility 	41
 Electrical activity of the large intestine 	42
 Factors affecting motility 	44
 Motility of the anorectum 	46
Pathology of Hirschsprung's Disease:	49
 Pathophysiology of Hirschsprung's disease 	49
 Pathogenesis of enteric neurocristopathies 	50
 Classic pathology of Hirschsprung's disease 	51

	Page
 Enterocolitis complicating Hirschsprung's disease 	53
Diagnosis of Hirschsprung's Disease:	56
 Clinical presentations 	56
Diagnostic radiology	60
 Rectal biopsy 	65
 Anorectal manometry 	72
 Variants of Hirschsprung's disease and other dysmotility 	73
disorders	
 Idiopathic constipation 	81
 Congenital anomalies associated with Hirschsprung's disease 	84
Treatment:	85
 Operative treatment of Hirschsprung's disease 	85
 Postoperative issues, long-term effects on quality of life 	90
Patients and Methods	92
Results	104
Discussion	124
Summary and Conclusion	132
References	133
Arabic Summary	

Abstract

The diagnosis of Hirschsprung's disease presents a clinical challenge to the pediatric surgeon. Hirschsprung's disease should be considered in any child who has a history of constipation dating back to the newborn period.

In our study the results of the contrast enema are well correlated and comparable to the rectal biopsy in the diagnosis of Hirschsprung's disease.

As barium enema is a noninvasive diagnostic tool, the presence of strongly positive enema findings associated with classic clinical presentation is considered in the author's point of view sufficient evidence to operate.

In cases of obistipant constipation and inconclusive contrast enema findings, thorough and careful medical management should be initially attempted, if failed; rectal biopsy by an experienced pediatric surgeon is indicated.

Key Word

Comparative Study between Contrast Enema Findings and Rectal Biopsy in the Diagnosis of Hirschsprung's Disease

Introduction and Historical Background

Herald Hirschsprung, senior pediatrician at the Queen Louise Children's Hospital in Copenhagen, presented the classic description of the disease that now carries his name to the Pediatric Congress in Berlin in 1886 [1]. He described two children with the classic clinical and anatomic characteristics of the disease. The children died at 7 and 11 months of age from what appeared to be repeated bouts of enterocolitis. Subsequently, several case reports were presented, including 10 additional children described by Hirschsprung in 1904; he called the disease congenital dilatation of the colon [2].

An understanding of the pathogenesis of Hirschsprung's disease took several more decades. Three basic theories were advanced. The first was the "malfunction theory" which stated that the hypertrophied colon was the primary congenital defect. The second was the "obstructive theory" which attributed the dilated colon to a mechanical blockage caused by redundancies of the colon or rectal valves. The "spastic theory," which posited that the distal colon was in spastic contraction, causing a functional obstruction, was initially put forward by Fenwick in 1900 [3].

An appreciation that the distal colon was the actual abnormality was initially advanced by Tittel in 1901; he identified an absence of ganglion cells in the distal colon of a child with Hirschsprung's disease [4].

Ehrenpreis in 1946 was the first to appreciate that the colon became secondarily dilated due to the more distal obstruction. In 1948 both Whitehouse and Kernohan and Zuelzer and Wilson definitively documented the absence of ganglion cells of the myenteric plexus in patients with Hirschsprung's disease. The first corrective surgery for

Hirschsprung's disease was performed by Swenson and Bill in 1948; a historical perspective of the cause and treatment of this disease was then published by Swenson [5].

In the presence of the world's most recognized investigators of this issue, controversies concerning diagnostic guidelines for anomalies of the enteric nervous system were discussed in the Fourth International Symposium on Hirschsprung's disease and related neurocristopathies, held in Sestri Levante in Italy in April, 2004. It was agreed that Intestinal Dysganglionoses (IDs) represent a heterogeneous group of Enteric Nervous System anomalies including Hirschsprung's disease (HD), Intestinal Neuronal Dysplasia (IND), Internal Anal Sphincter Neurogenic Achalasia (IASNA) and Hypoganglionosis. At present HD is the only recognized clinico-pathological entity, whereas the others are not yet worldwide accepted or diagnosed [6].

The most important diagnostic features of HD are the combination of hypertrophic nerve trunks and aganglionosis in adequate specimens. Acetylcholinesterase staining is the best diagnostic technique to demonstrate hypertrophic nerve trunks in lamina propria mucosae, but many pathologists from different centers still use H&E. staining effectively. Although it is not clear whether IND is a separate entity or some sort of secondary acquired condition, it is concluded that both IND and IASNA do exist. "Are they true congenital malformations or acquired phenomena?" This was the major debate that was raised regarding the origins of these anomalies [6].

Although more than 70 diagnostic, enzymatic-Histochemical and immunohistochemical staining techniques, have been proposed for enteric nervous system evaluation. Most of the hospital facilities cannot afford the adoption of expensive and sophisticated staining techniques on a daily

routine basis. Therefore these hospitals use nonspecific histomorphological staining techniques such as H&E. European and Asian investigators routinely use AChE to diagnose HD, whereas the American counterparts think that H&E is more user friendly, cheaper, and more reliable for the diagnosis of HD [7].

There is an agreement that anorectal manometry is unnecessary to diagnose Hirschsprung's disease, yet some still use manometry as an adjunct to help the diagnosis or as a study complement. Anorectal manometry is more useful in the diagnostic workup of Internal Anal Sphincter Achalasia rather than Hirschsprung's Disease. Barium enema is the most important radiographic study, either to diagnose Hirschsprung's disease or in selecting the operative approach [6].

The diagnosis of Hirschsprung's disease (HD) should take place early in the neonatal period, because without an effective diagnosis and appropriate treatment, a considerable proportion of infants will develop serious complications, such as acute enterocolitis or toxic megacolon [8].

Because no more that 10% of HD cases have a late presentation with classical chronic constipation and megacolon, the clinician has to make difficult, early diagnosis, which is the crux of the clinical problem [8].

The aim of this review is to present all tools currently available to a clear diagnosis and to discuss the problems facing the clinician and the pediatric surgeon in the correct identification of Hirschsprung's disease.

AIM OF THE WORK

The aim of this work is to study the accuracy of contrast enema in the diagnosis of Hirschsprung's disease comparing it with the results of rectal biopsy which represents the gold standard.