

Possible Protective Effects of Amla (Emblica officinalis) on Gamma-Irradiated Male Albino Rats

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of M.Sc. in Zoology

By Amal Kamal Omar Mohamed

B.Sc. Zoology and Chemistry (2008) Zoology Department, Faculty of Science Banha University

Under Supervision of

Prof. Dr. Safaa A. El-Seifi

Professor of Physiology Zoology Department Faculty of Science Ain Shams University.

Prof. Dr. Hekmat M. Abou-Safi

Professor of Physiology Radiation Biology Department National Center of Radiation Research and Technology (NCRRT) Atomic Energy Authority (AEA)

Faculty of Science Ain Shams University 2018

Possible Protective Effects of Amla (Emblica officinalis) on Gamma-Irradiated Male Albino Rats

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of M.Sc. in Zoology

By Amal Kamal Omar Mohamed

B.Sc. Zoology and Chemistry (2008) Zoology Department, Faculty of Science Banha University

> Faculty of Science Ain Shams University 2018

بنيب إلله الزجمز الحيتم

﴿ وعَلَّمَكَ مَا لَمْ تَكُن تَعْلَمُ وكَانَ فَضْلُ اللَّهِ عَلَيْكَ عَظِيماً ﴾

صدق الله العظيم النساء .. آية رقم 113

Biography

Name : Amal Kamal Omar Mohamed

Degree awarded: B.Sc. Zoology and Chemistry (2008)

Zoology Department, Faculty of Science

Banha University

Faculty : Faculty of Science, Banha University,

Zoology/Chemistry, Excellent with Honor Degree,

2008

Grade : M.Sc. in physiology

Occupation : Radiation Biology Research Department, National

Center for Radiation Research and Technology

(NCRRT), Atomic Energy Authority (AEA),

Cairo, Egypt

ACKNOWLEDGEMENTS

First, foremost, and all thanks to **Allah** by whose grace this work has been completed, and by whose support and guidance I depend upon, throughout my life.

I would like to express my appreciation and gratitude to *Prof. Dr. Safaa El-Seifi*, Professor of Physiology, Dept. of Zoology, Faculty of Science, Ain Shams University; for all her assistance, encouragement and enduring patience while performing this study; as well as revision of the manuscript. I am indeed lucky to have had the chance to learn and work with her

I am heartily thankful to my supervisor *Prof. Dr. Hekmat M. Abou-Safi*, Professor of Physiology, National Center of Radiation Research and Technology, Atomic Energy Authority; whose encouragement, guidance and support, from the initial to the final steps, enabled me to develop an understanding of the subject during the practical and theoretical parts of this study. This thesis would not have been accomplished without her active supervision, guidance and sincere help.

I would also like to thank all staff members and my colleagues in Radiation Biology Department, NCRRT; for the generous facilities they provided during the practical part of this study.

Special thanks to my family. Words cannot express how grateful I am to my father for all his sacrifices and prayers for me that sustained me thus far.

I would also like to thank my husband, brother and sisters who supported and encouraged me to strive towards my goal.

This work is dedicated to My mother

May she rest in peace.

Declaration

I declare that this thesis has been composed by myself and the work of which is a record that has been done by myself. This thesis has not been submitted for a degree at this or any other university.

Amal Kamal Omar Mohamed

CONTENTS

	Page
LIST OF ABBREVIATIONS	i
LIST OF TABLES	v
LIST OF FIGURES	X
ABSTRACT	
INTRODUCTION	
AIM OF THE WORK	
REVIEW OF LITERATURE	
I-Ionizing Radiation	9
A-Biological Effects of Ionizing Radiation	10
B-Oxidative Stress and Redox Biology	15
II- Effects of Ionizing Radiation on:	20
1-The Lipid Profile	20
2-Vital Organelles and Organs	
a) The Mitochondria	
b) The Kidney	
c) The Heart	
3- Hormones	
b) Natriuretic Peptides (NP _s)	
c) Corticosterone	
III- Natural Antioxidants and Radiati	ion Protection 48
Emblica officinalis Geartn	
MATERIALS AND METHODS	54
I-Materials:	54
Chemicals	54

	Experimental Animals	54
II-	Methods:	56
	experimental Design	
	Emblica Officinalis (EO) Treatment:	
	rradiation Process	
	Blood and Tissue Sampling.	
	solation of Mitochondrial Fraction	
	Biochemical Analyses Determinations of Hormonal Concentrations	
	Real-Time Polymerase Chain Reaction (PCR):	
	Adenosine-Tri-Phosphate Synthase (ATP Synthase)	
	tical Analysis	
RES	<i>ULTS</i>	91
I-Bi	ochemical Analyses	92
a)	Oxidant /Antioxidant Markers:	92
	1- Lipid Peroxidation: Malondialdehyde (MDA) Levels	92
	2- Reduced Glutathione (GSH) Content	101
	3- Xanthine Oxidase (XO) Activity	111
	4- Xanthine Dehydrogenase (XDH) Activity	. 117
	5- Advanced Oxidation Protein Products (AOPP) Concentration	123
b)	Lipid Profile	130
•	Plasma Concentrations:	
	1- Triglycerides	. 130
	2-Total Cholesterol (TCh)	
	3- High Density Lipoprotein-Cholesterol(HDL-Ch)	
•	Low Density Lipoprotein-Cholesterol (LDL-Ch)	139
•	Atherogenic Index (AI)	142

c) Renal Functions:	145
• Plasma Concentrations:	
1- Urea	145
2- Creatinine	148
3- Sodium Ion (Na ⁺)	151
4- Potassium Ion (K ⁺)	154
• Renal Mitochondrial Calcium Ion (Ca ²⁺) Concentration	157
• Enzymes' Activities Determined in the Renal Cytosolic Fra	action:
1- Glucose -6- Phosphate Dehydrogenase (G6PDH)	160
2- Lactate Dehydrogenase (LDH)	163
d) Cardiac Functions:	
Plasma Creatine Phosphokinase (CPK) Activity	167
• Cardiac Mitochondrial Calcium Ion (Ca ²⁺) Concentration	170
Enzymes' Activities Determined in Cardiac Cytosolic Fra	ection:
1- Glucose-6-Phosphate Dehydrogenase (G6PDH)	173
2- Lactate Dehydrogenase (LDH)	176
	•
II- Determination of Plasma Hormonal Concentrati	
2- Aldosterone.	
3- Atrial Natriuretic Peptide (ANP)	
4- Corticosterone.	
III- Real-Time Polymerase Chain Reaction (PCR):	193
Adenosine Tri-Phosphate Synthase (ATP Synthase):	193
1- Renal Mitochondrial ATP Synthase Gene Expression.	
2- Cardiac Mitochondrial ATP Synthase Gene Expressio	
DISCUSSION	200

CONCLUSION	230
SUMMARY	231
REFERENCES	237
الملخص العربي	3
المستخلص العربي	1

LIST OF ABBREVIATIONS

AMPK	Activated mitogen protein kinase
ADP	Adenosine diphosphate
ATP	Adenosine triphosphate
ACTH	Adenocorticotropic hormone
AOPP	Advanced oxidation protein product
ANOVA	Analysis of variance
Ang I	Angiotensin I
Ang II	Angiotensin II
ACE	Angiotensin-converting enzyme
AT	Angiotensin receptor
AVP	Arginine vasopressin
ANP	Atrial natriuretic peptide
AI	Atherogenic index
Apf-1	ATP-dependent proteolysis factor 1
BUN	Blood urea nitrogen
b.wt.	Body weight
BNP	Brain natriuretic peptide
Ca ²⁺	Calcium ions
CCL ₄	Carbon tetra-chloride
CVD	Cardiovascular disease
CAT	Catalase
CNS	Central nervous system
⁶⁰ Co	Cobalt -60
cDNA	complementary DNA
CPK	Creatine phosphokinase
CNP	C-type natriuretic peptide
cAMP	Cyclic adenosine monophosphate
Cys-SoH	Cysteine sulfenic form
Cys-SH	Cysteine thiol
Cys-S-	Cysteine thiolate

DOCA	Deoxycorticosterone acetate
DNA	Deoxyribonucleic acid
DTNB	5, 5' dithiobis-2-nitrobenzoic acid
ECGS	Echocardiograms
EDTA	Ethylene diamine tetraacetic acid
ЕО	Emblica officinalis
ET-1	Endothelin-1
ELISA	Enzyme-linked-immunosorbent assay
Fe ²⁺	Ferrous ion
GGT	Gamma-glutamyl transferase
GFR	Glomerular filtration rate
G6PDH	Glucose 6-phosphate dehydrogenase
Grx	Glutaredoxin
GSH	Glutathione
GSSG	Glutathione disulfite
GP _x	Glutathione peroxidase
HbA1c	Glycated hemoglobin
Gy	Gray
НСН	Hexachlorocyclohexane
HDL-Ch	High density lipoprotein-cholesterol
H_2O_2	Hydrogen peroxide
OH-	Hydroxyl radical
HNE	4-hydroxynonenal
HMG-CoA	Hydroxymethylglutaryl Coenzyme A
IR	Ionizing radiation
iNOS	Inducible nitric oxide synthase
IDE	Insulin degrading enzyme
JG	Juxta-glomerular
LDH	Lactate dehydrogenase
LSD	Least significant difference
LCAT	Lecithin-cholesterol acyl transferase
LC3	Light chain 3

LPO	Lipid peroxidation
LDL-Ch	Low density lipoprotein-cholesterol
MDA	Malondialdehyde
mtDNA	Mitochondrial DNA
MAPK	Mitogen-activated protein kinase
Mn-SOD	Manganese-superoxide dismutase
NPs	Natriuretic peptides
NPR	Natriuretic peptide receptor
NEP	Neural endopeptidase
NAD ⁺	Nicotinamide adenine dinucleotide
NADPH	Nicotinamide adenine dinucleotide phosphate
NCRRT	National Center for Radiation Research and
	Technology
NO	Nitric oxide
Nrf2	Nuclear factor E2-related factor 2
PRx	Peroxiredoxins
PUFAs	Polyunsaturated fatty acids
K ⁺	Potassium ion
PGE ₂	Prostaglandin E ₂
PGI ₂	Prostaglandin I ₂
ROS	Reactive oxygen species
RT-PCR	Real-time polymerase chain reaction
RAAS	Renin-angiotensin-aldosterone system
RCT	Reversed cholesterol transport
Na ⁺	Sodium ion
S.E.	Standard error
O [•] 2	Superoxide radical
SOD	Superoxide dismutase
SNS	Sympathetic nervous system
TBARS	Thiobarbituric reactive substance
Trx	Thioredoxin
TCh	Total cholesterol

TG	Triglycerides
VLDL-Ch	Very low density lipoprotein-cholesterol
WBI	Whole body gamma irradiation
XO	Xanthine oxidase
XDH	Xanthine dehydrogenase
XOR	Xanthine oxidoreductase