Water Balance in Intensive Care Unit Patients

Essay

Submitted for partial fulfillment of Master Degree in General Intensive Care

BY

Ahmed Ali Abdel Ghaffar Sakr

M.B.B.Ch.

Faculty of Medicine - Tanta University

Under Supervision of

Prof. Dr. Mohammed Saeed Abdelaziz

Professor of Anesthesiology , Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

Prof. Dr.Dalia Abdel Hamid Mohammed

Professor of Anesthesiology , Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Sameh Ahmed Refaat

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2017

First and foremost, thanks to "ALLAH" for granting me the power accomplish this work;

I would like to express my endless gratitude and appreciation to **Prof. Dr.Mohammed Saeed abdelaziz**, Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University giving me his opinion in the choice of the topic of this Essay and the honour of working under his supervision and providing me with a lot of encouragement and support.

My deepest gratitude and appreciation are to **Prof. Dr.Dalia Abdel Hamid mohammed,** Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University for her supervision, guidance and help during preparation of this work

My deepest gratitude to **Dr. Sameh Ahmed Refaat** Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University has supported me during this work with her patience, advice, effort and guidance..

Special thanks and gratitude to all my family for their kind guidance and great help during the preparation of the work.

CONTENTS

Page No.
I
ii
iii
1
4
5
31
49
70
102
106

LIST OF TABLES

Table No.	Title	Page No.
Table (1): Da	aily Intake and Output of Wate	er (ml/day)7
	Osmolar Substances in racellular Fluids	
	onormalities of Body Fluid V	•
Table (4):Exa	amples of Plasma Components	for Clinical Use34
	mmon conditions affecting the ocardiograms	•
	Estimation of RAP from lapsibility Index (ICV CI)	
Table (7):Cau	uses of absolute and relative hy	vpovolemia71
Table (8): Pri	mary & secondary renal sodiu	m retaining states 85
Table (9):Diu	retic and other natriuretic med	lications96

LIST OF FIGURES

Fig	gure No. Title	Page No.
Fig.	(1): Total body water	6
Fig.	(2): The ECF and the ICF	9
Fig.	(3): Major Cations and Anions of the ICF and ECF	12
Fig.	(4): Nonelectrolytes of the plasma	12
Fig.	(5): Effects of Isotonic (A), Hypertonic (B), Hypotonic (C) solutions on cell volume	
Fig.	(6): Brain cell volume regulation during hyponatremia	25
Fig.	(7):Common factors confounding the echocardiographics signs of fluid status	-
Fig.	(8):IVC Collapsibility Index (IVC CI) measurement	56
Fig.	(9):Respiratory changes in IVC diameter as recorded M-mode	
Fig.	(10):Change in IVC Collapsibility Index with f administration	
Fig.	(11): Diastolic interventricularseptal flattening in volutional	
Fig.	(12): Jugular venous distention	91
Fig.	(13): peripheral edema	91
Fig.	(14): Ascites	92
Fig.	(15): Major transport processes along the neph segments and primary sites of action of diuretics.	

List of Abbreviations

% W/V : Percent of weight of solution in the total

volume of solution

2D : Two Dimension

ABCDE : Airway, Breathing, Circulation, Disability,

Exposure

ADH : Anti Diuretic Hormone

Ag : Antigen Cm : Centimeter

Cm H₂O : Centimeter of water Cm² : SquareCentimeter

COPD : Chronic Obstructive Pulmonary Disease

CPM : Central PontineMyelinosisCVP : Central Venous Pressure

D5 : 5% Dextrose

D5 1/2NS : Dextrose in half amount of normal saline

D5LR : Milliliter

D5NS : 5% Dextrose in Normal Saline

D5W : 5% Dextrose in Water

Da : Daltons

DDFPe : DoDecaFluroPentane emulsion

D_{max} : maximum DimensionD_{min} : minimum Dimension

EABV : Effective Arterial Blood Volume

ECF : ExtraCellular FluidECHO : sonogram of the HeartGFR : Glomerular Filtration Rate

H₂PO₄ : Phosphoric Acid

HBOC : Hemoglobin carrying Oxygen

HES/HAES : Hydroxyethyl starchICF : IntraCellular FluidICU : Intensive Care Unit

IMHA : Immune Mediated Hemolytic Anemia

List of Abbreviations

IV : IntraVenous

IVC : Inferior Vena Cava

IVC DI
 Inferior Venacava Distensibility Index
 IVC VI
 Inferior Venacava variability index
 IVC CI
 Inferior Vena cava Collapsibility index

LA : Left Atrium
LR : Lactated Ringer
LV : Left Ventricle

mEq/L : Milliequivalent per liter

mg/ml : 5% Dextrose in Lactated Ringer solution

mL milligram per milliliterml/kg/hr milliliter / kilogram / hour

mm : millimeter

mm Hg : Millimeter of mercury

M-mode : Motion mode

mmol/L
mOsm/L
millimole per Liter
milliosmole per Liter
MW
Molecular Weight
NaCl
sodium Chloride
NG tube
NasoGastric tube

NSAID : Non-Steroidal Anti-Inflammatory Drugs

NSS : Normal Saline Solution

 O_2 : Oxygen

PaO₂ : Partial pressure of Oxygen dissolved in the

blood

PCC : Prothrombin Complex ConcentratePEEP : Positive End-Expiratory Pressure

PFC: PerFluroCarbons

PH : Potential of Hydrogen

PO₂ : Partial pressure of Oxygen

PO₄ : Phosphorus

PVR : Pulmonary Vascular Resistance

List of Abbreviations

RA : Right Atrium

RACE : Regional Approach to Cardiovascular

Emergencies

RAP : Right Atrial Pressure

RV : Right Ventricle

SAM : Systolic Anterior Motion

T₄ : Thyroxine hormoneTBW : Total Body Water

TCA : Tri-Carboxylic Acid cycle

U/S : UltraSonography

Introduction

The total body water in a 70-kilogram adult man, the total body water is about 60 percent of the body weight, or about 42 liters . Women normally have a greater percentage of body fat compared with men, their total body water averages about 50 percent of the body weight. In premature and newborn babies, the total body water ranges from 70 to 75 percent of body weight (**Bhave and Neilson, 2011**).

As cell membranes are relatively impermeable to most solutes but are highly permeable to water (i.e., they are selectively permeable), whenever there is a higher concentration of solute on one side of the cell membrane, water diffuses across the membrane toward the region of higher solute concentration. The rate of diffusion of water is called the rate of osmosis (**Kramer and Eric, 2012**).

Fluid distributed between the plasma and interstitial spaces are determined mainly by the balance of hydrostatic and colloid osmotic forces across the capillary membranes. The maintenance of a relatively constant volume and a stable composition of the body fluids are essential for homeostasis. Some of the most common and important problems in clinical medicine arise because of abnormalities in the

control systems that maintain this relative constancy of the body fluids (Bhave and Neilson, 2011).

Intravenous fluids are chemically prepared solutions that are administered to the patient. They are tailored to the body's needs and used to replace lost fluid and/or aid in the delivery of IV medications. IV fluids come in different forms and have different impacts on the body (Perel et al., 2013).

in four different forms: Colloids. Crystalloids, blood and blood products, Oxygen carrying solutions (Lekkerkerker et al.,2011).

Maintaining adequate circulation is a key task of critical care physicians, yet it is also one of the most challenging areas in the critical care setting. Traditionally, assessment and monitoring of fluid status (intravascular volume) has relied upon invasive modalities such as pulmonary artery and central venous catheters. And non-invasive such as urine output volume, consciousness, base deficit and lactate level. (Bellomo et al., 2012).

Hypovolemia is a reduction in the volume of the ECF compartment in relation to its capacitance (Gulati, 2016).

The major goal in treatment of hypovolemia is to restore hemodynamic integrity and tissue perfusion (**Kramer et al.**, **2008**).

Hypervolemia refers to expansion of ECF volume, which varies, even in normal individuals, with dietary sodium intake (**DiSomma et al., 2010**).

Therapeutic intervention to reduce ECF volume without addressing the underlying disease is often met by complications, especially when ECF volume expansion is associated with decreased intravascular volume or EABV. Nevertheless, three treatment modalities are available to reduce ECF volume directly by inducing negative sodium balance: dietary sodium restriction, diuretics, and extracorporeal fluid removal by ultrafiltration (**Titze et al., 2014**).

AIM OF THE WORK

The aim of this work is to spot a light on water balance in intensive care unit patients by fluid administration focusing on the changes in fluid hemostasis & calculation of fluid requirements, their physical characteristics and whether to select crystalloid or colloid solutions.

Chapter (1):

Physiology of water balance

Water constitutes approximately 55% to 65% of body weight, varying with age, gender, and amount of body fat. Therefore, water constitutes the largest single constituent of the body. Total body water (TBW) is distributed between the IntraCellular Fluid (ICF) and ExtraCellular Fluid (ECF) compartments. About 55% to 65% of TBW resides in the ICF and 35% to 45% is in the ECF. Approximately 75% of the ECF compartment is interstitial fluid and only 25% is intravascular fluid (blood volume), as shown in Figure 1 (Tanner, 2009).

The maintenance of a relatively constant volume and a stable composition of the body fluids is essential for homeostasis. Some of the most common and important problems in clinical medicine arise because of abnormalities in the control systems that maintain this relative constancy of the body fluids (Bhave and Neilson, 2011).

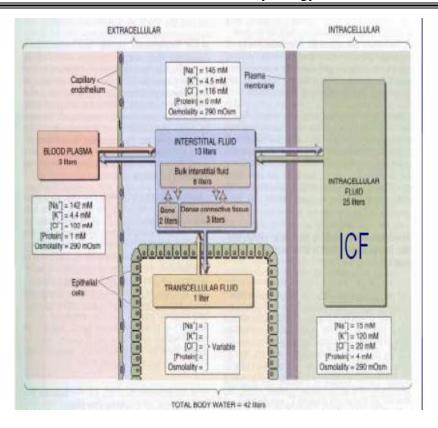


Fig. (1): Total body water (Tanner, 2009).

Fluid Intake and Output are Balanced during Steady-State Conditions:

The relative constancy of the body fluids is remarkable because there is continous exchange of fluid and solutes with the external environment, as well as within the different body compartments (**Tanner**, **2009**).

Daily Intake of Water:

Water is added to the body by two major sources:

- (1) It is ingested in the form of liquids or water in food, which together normally add about 2100ml/day to the body fluids.
- It is synthesized in the body by oxidation of carbohydrates, adding about 200ml/day.

Intake of water is highly variable among different people and even within the same person on different days, depending on climate, habits, and level of physical activity as shown in table 1 (Jequier and Constant, 2010).

Table (1): Daily Intake and Output of Water (ml/day) (Jequier and Constant, 2010).

	Normal	Prolonge, heavy excercise
Intake		
Fluid ingested	2100	?
From metabolism	200	200
Total intake	2300	?
Output		
Insensible: skin	350	350
Insensible: lung	350	650
sweat	100	5000
feces	100	100
urine	1400	500
Total output	2300	6600