Intraoperative Corneal Thickness During Corneal Cross Linking in Keratoconus

Thesis submitted in partial fulfillment for M.Sc degree in Ophthalmology

By: Nihal Abdel Fatah ElGhryany (M.B., B.CH)

Supervisors

Prof. Dr. Yehia Salah Eldin

Prof. of Ophthalmology Cairo University

Dr. Ahmed Sherif

Lecturer of Ophthalomology Cairo University

Dr. Lamia Samy

Lecturer of Ophthalmology Cairo University

Department of Ophthalmology Faculty of Medicine Cairo University 2015

Acknowledgement

I would like to express my deep thanks, gratitude and appreciation to my mentor **Professor Dr. Yehia Salah Eldin,** Professor of Ophthalmology Faculty of Medicine – Cairo University; for supporting me every step of the way and for his extensive help, kind supervision and the continuous encouragement throughout the course of this work.

Also, many great thanks and appreciation are also owed to **Dr Ahmed Sherif** and **Dr Lamia Samy** lecturers of Ophthalmology Faculty of Medicine Cairo University; for their great help, sincere cooperation and fruitful support during the conduction of this work.

And I would like to thank my **Mom**, my **Dad** and my **dear husband** for their everlasting love, care and support.

Thank you

Nihal

Abstract

OBJECTIVE: To monitor the changes in corneal thickness during accelerated pulsed corneal collagen cross-linking procedure by using dextran free riboflavin solution with HPMC in keratoconus patients.

MATERIALS AND METHODS:

The central corneal thickness measurements were obtained by pachymetry before epithelial removal, after epithelial removal, following the instillation of dextran free riboflavin solution with HPMC for 10 min, and after 8 min of pulsed ultraviolet A irradiation (30 mW/cm² surface irradiance for total treatment of 7.2J/cm²).

RESULTS:

Twenty eyes of eleven patients with progressive keratoconus (n = 20) were included in this study. The mean central pachymetric measurements were $506.8\pm35\mu m$ before epithelial removal, declined to a mean of 474.9 $\pm40~\mu m$ after de-epithelialization of the cornea, declined further to a mean of $445.7\pm31\mu m$ following 10 min instillation of dextran free riboflavin solution with HPMC and $444.65\pm35\mu m$ following 8 min of pulsed ultraviolet A irradiation to the cornea.

CONCLUSION:

Performing accelerated pulsed corneal cross-linking procedure with dextran free riboflavin solution with HPMC induce corneal thinning of 12.3% which is less than cornea thinning induce by riboflavin with dextran and conventional CCXL.

Keyword: Hpmc-CACXL-pl-ACXL-MMP

List of Abbreviations		
A-CXL	Accelerated corneal crosslinking	
BFS	Best fit sphere	
CACXL	Contact Lens-Assisted Collagen Cross-Linking	
CCT	Central corneal thickness	
CCXL	Corneal cross linking	
DLK	Diffuse lamellar keratitis	
FTIR	The potential of Fourier Transform Infrared (FTIR)	
	spectroscopy	
HPMC	Hydroxypropyl Methycellulose	
IVCM	In vivo confocal microscopy	
KC	Keratoconus	
kDa	Kilo Dalton	
KISA%	Keratometry, I-S, Skew percentage, Astigmatism	
LASIK	Laser assisted in situ keratomileusis	
MMP	Matrix metalloprotienase	
OCT	The spectral-domain optical coherence tomography	
PK	Penetrating keratoplasty	
pl-ACXL	Pulsed accelerated cross linking	
PMD	Pellucid marginal corneal degeneration	
PRK	Photorefractive keratectomy	
ROS	Reactive oxygen species	
TCT	Thinnest corneal thickness	
UVA	Ultraviolet A	

List OF Tables		
1	Krumeich Classifi cation of Keratoconus	13
2	Mean CCT during different phases of pulsed accelerated corneal crosslinking	70
3	Paired sample test of central corneal thickness before epithelial removal (baseline thickness) and after completion of UVA treatment	71
4	Paired sample test central corneal thickness before and after epithelial removal	72
5	Paired sample test of central corneal thickness after epithelial removal and after riboflavin soaking	72
6	Paired sample test of central corneal thickness after riboflavin soaking and after completion of UVA treatment	73

List of Figures

1	Keratoconus	3
2	PMD	5
3	Post LASIK ectasia	7
4	Vogt striae	10
5	Kayser-Fleischer ring	11
6	Acute hydropes	11
7	Rizzuti's Sign	12
8	Munson`s sign	12
9	Topographic Shape Patterns Characterizing Irregularity	16
10	Pentacam (Oculus, Wetzlar, Germany)	21
11	Orbscan I (Bausch & Lomb, Rochester, New York, USA) of a keratoconus patient	22
12	Grade 3 keratoconus	23
13	Grade 3 keratoconus	23
14	Grade 2 keratoconus	24
15	Grade 1 keratoconus	25
16	collagen corneal cross linking	26
17	Intacs	28

18	PKP	30
19	Depletion and gradual replenishment of dissolved	36
	oxygen below a 100 micron thick corneal flap, saturated	
	with 0.1% RF during 3 mW/cm2 UVA irradiation at	
	250C, demonstrating the distribution of predominant	
	reaction types during light exposure	
20	Depletion of dissolved oxygen below a 130 microns thick	37
	corneal flap, saturated with 0.1% Riboflavin during 3	
	mW/cm2 UVA irradiation at 250C with quick	
	replenishment of oxygen after the UV light is turned off	
21	Paracel	44
22	Ricrolin TE	44
23	Relative cross-linking efficacy as measured using papain	46
	digestion with spectrofluorometer analysis for 200	
	microns thick porcine corneal flaps without epithelium.	
24	contact lens assisted corneal cross linking	49
25	Corneal haze	56
26	Corneal decompensation	58
	Corner accompendation	
27	Acanthameba keratitis	60
28	Diffuse lamellar keratitis	61
		01
29	sterile peripheral infiltrates	62
30	KXL I UV-A source (Avedro Inc., Waltham, MS, USA)	67
31	VibeX Rapid, Avedro Inc., Waltham, MS, USA	68

32	UVA treatment during cross linking	69
33	Sonomed 300P Pacscan Pachymeter	71
34	Mean CCT measured during accelerated pulsed CCXL	71
35	CCT decreases after riboflavin soaking compared to deepithelized CCT.	73
36	CCT remains stable through UVA treatment	74

	Table of contents	
I	Introduction	1
II	Aim of The Work	2
III	Review of Literature	
	Corneal Ectasias	3
	 Keratoconus 	
	1. Etiology	8
	2. Signs	9
	3. Classifications	13
	4. Diagnosis	17 26
	5. Treatment	20
	 Corneal Cross Linking 	
	1. The idea of CCXL	31
	2. Clinical studies	32
	3. Mechanism of CCXL	33
	4. Laboratory studies	38
	5. Standard epithelium off technique	40
	6. Epithelium on technique	42
	7. Accelerated CCXL	45
	8. Accelerated Pulsed CCXL	47
	9. Treatment of thin corneas	48
	10. Clinical applications of CCXL	50
	11. Complications	52
	■ Importance of measuring intraoperative CCT during	55
	CCXL	
IV	Patient and Methods	65
V	Results	70
VI	Discussion	75
VII	Conclusion and Recommendations	86
VIII	Summary	87
IX	References	89
X	Arabic Summary	122

Introduction and Aim of Work

Introduction

Keratoconus is a progressive, noninflammatory dystrophy of the cornea of unknown pathogenesis, (1) characterized by a number of histopathologic abnormalities, which lead to a progressive mechanical strength reduction of the cornea over time. (2-4)

Corneal collagen cross-linking (CCXL) is a low-invasive treatment aimed to improve biomechanical stability in eyes with keratectasia (5-7) A photodynamic reaction induced by photosensitizing riboflavin and ultraviolet A (UVA) light causes an increase of the number of intra- and interfibrillarcovalent bonds and the corneal collagen resistance against enzymatic degradation (8-10) Increased stromal biomechanical strength and lamellar compaction lead to stabilized corneal shape and better corneal symmetry, potentially causing an improvement in visual function (11-13) In CXL, riboflavin has a dual function acting both as a photosensitizer inducing the physical collagen cross-linking and as an absorber of the UVA irradiation, preventing damage to deeper ocular structures (14-15) Wollensak proposed a corneal preoperative thickness of 400 micron as a minimum safety limit to avoid endothelium, lens, and retinal damage. He also reported corneal keratocytes apoptosis after CXL of up to 300 micron depth in rabbit corneas (14). This cell apoptosis follows the Lambert-Beer law, according to which smaller irradiances can lead to shallower cell death. (14)

Many studies suggested that corneal thickness decreases during the procedure of corneal cross linking, it has been reported by some studies that it reached 300 microns or less, .^(319, 328-330, 335-339) which compromises the corneal endothelium and may lead to endothelial de compensation ^(294, 298)

Aim of Work

The aim of work is to study the effect of Accelerated Pulsed Corneal Cross Linking using dextran free Riboflavin with HPMC on the intraoperative corneal thickness.

Review of Literature

Corneal Ectasias

1- Keratoconus

Keratoconus is a bilateral, noninflammatory corneal ectasia with an incidence of approximately one per 2,000 in the general population, although less obvious cases such as early forme fruste presentations are thought to be much more common. Keratoconus is characterized by a progressive increase in corneal curvature, with apical thinning and irregular corneal astigmatism. Eventually, an obvious cone-shaped protrusion of the corneal surface may develop.

Keratoconus often becomes apparent during the teenage years and classically progresses until the third and fourth decades of life, when many affected individuals experience an arrest of disease progression or at least a reduction in the rate of progression⁽¹⁶⁾

Fig. 1: keratoconus (17)

2-Pellucid marginal corneal degeneration

(PMD) is less common than keratoconus. It usually affects the inferior peripheral, rather than paracentral, cornea in about 85% of cases and the superior peripheral cornea in 15%. It occurs in a crescentic fashion typically between the 5 and 7 o'clock positions^(18,19) It is more common in males, with a male to female ratio of approximately 3:1.⁽¹⁹⁾ Its age of onset is usually later than keratoconus, presenting between the 2nd and 5th decades. It is typically bilateral and affects all ethnicities.^(18,19) The incidence and aetiology of PMD remain unknown. It often presents with progressive with severe against the rule astigmatism typically with good spectacle corrected acuity until the advanced stages of the disease. Hydrops and even spontaneous perforation can occur.^(18,19) Topography typically shows a "lobster-claw pattern" but this is not pathognomonic and may also occur in keratoconus and there is overlap between the two conditions, as well as with keratoglobus.^(19,20)