ROLE OF US ELASTOGRAPHY AS A NON-INVASIVE TECHNIQUE IN ASSESSMENT OF LIVER PATHOLOGIES

ESSAY SUBMITTED FOR PARTIAL FULFILLMENT OF MASTER DEGREE IN RADIODIANOSIS BY

Dr FATH ALLAH FATHY FATH ALLAH AWAD M.B.B.CH.

SUPERVISED BY

Prof. DR.SAMER MALAK BOTROS

ASSISTANT PROFESSOR OF RADIODIAGNOSIS FACULTY OF MEDICINE AINSHAMS UNIVERSITY

DR. HOSSAM MOUSSA SAKR

LECTURER OF RADIODIAGNOSIS FACULTY OF MEDICINE AINSHAMS UNIVERSITY

> FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 2010

CONTENTS

- 1. Introduction and aim of work
- 2. Gross Liver Anatomy
- 3. Liver Anatomy By US
- 4. Related Hepatic Pathologies
- 5. D\ng\W\Df]b\\d\\g'5\bX\H\\b]ei \YC\Z9\\g\c[f\Ud\m
- 6. USE Manifestation in Liver pathologies.
- 7. Summary and conclusion
- 8. References
- 9. Arabic summary

دور قياس المرونة عن طريق الموجات فوق الصوتية كتقنية غير تداخلية في تقييم أمراض الكبد

رسالة مقدمة من الطبيب/فتح الله فتحى فتح الله عوض الطبيب/فتح الله فتحى فتح الله عوض بكالوريوس الطب و الجراحة توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

تحت إشراف

أ. د. سامر ملاك بطرس

أستاذ م الأشعة التشخيصية كلية الطب- جامعة عين شمس

د. حسام موسى صقر

مدرس الأشعة التشخيصية كلية الطب- جامعة عين شمس

> جامعة عين شمس 2010

"""Abbreviations

ALT	Alanine transpeptidase
APRI	Aspartate amino transferase (AST)-platelet ratio index
APOA1	Human apolioprotein A1
AST	Aspartate aminotransferase
CBD	Common Bile Duct
СНД	Common Hepatic Duct
CTLA	Cytotoxic T. Lymphocyte antigen
ECM	Extra cellular matrix protein
НА	Hepatic Artery
γ GT	γ-glutamyl transpeptidase
НА	hyaluronic acid
HCV	Hepatitis C Virus
HVs	Hepatic veins
IVC	Inferior Vena Cava
KPa	Kilo- Pascal

LNs	Lymph nodes	
LB	Liver biopsy	
MMPS	Matrix metalloproteinases	
MHz	Mega Hertz	
m RNA	Messenger RNA	
NAFLD	Non alcoholic fatty liver disease	
NASH	Non Alcoholic steato-hepatitis.	
PBC	Primary biliary cirrhosis.	
PDGF	Platelet-derived growth factor.	
PT	Prothrombin time	
PPAR γ	Peroxime proliferator –activated receptor	
PV	Portal vein.	
ROI	Region Of Interest	
ROS	Reactive oxygen species	
TGF β	Transforming growth factor beta	
Th2	T helper cell 2	
TIMP1	Tissue inhibtors of myloproteins Type 1	
RTE	Real time Elastography	

ALT	Alanine transpeptidase	
APRI	Aspartate amino transferase (AST)-platelet ratio index	
APOA1	Human apolioprotein A1	
AST	Aspartate aminotransferase	
CBD	Common Bile Duct	
СНД	Common Hepatic Duct	
CTLA	Cytotoxic T. Lymphocyte antigen	
ECM	Extra cellular matrix protein	
НА	Hepatic Artery	

Diagrams

Page	Diagram
5	Diagram 1 Diaphragmatic surface of the liver.
6	Diagram 2 visceral surface of the liver.
8	Diagram 3 Posterior view of the bare area of the liver and associated ligaments.
13	Diagram 4 Diagrammatic illustration of hepatic segmental anatomy.
74	Diagram 5 The Fibro Scan is composed of a probe, a dedicated low-frequency elastic wave, electronic system and a control unit.
75	Diagram 6 Acquisition sequence: RF lines are acquired at a repetition frequency of 4000Hz during the propagation of the low-frequency elastic wave.
82	Diagram7 Fibro Scan Probe and its position on patient during examination
95	Diagram 8 Usefulness of liver stiffness measurement with Fibro Scan in clinical practice
97	Diagram 9 Agreement between FS, FT, and their combination with LB examination for the diagnosis of significant fibrosis(A) (F 2),(B) (F3), and (C) cirrhosis (F 4)
98	Diagram 10 Proposed algorithm for patient management according to FS and FT results

List of Figures

<u>Page</u>	<u>Figure</u>
23	Figure 1 Longitudinal section (LS) through the right lobe of the liver. The renal cortex is slightly less echogenic than the liver parenchyma
23	<i>Figure 2</i> The capsule of the liver (arrows) is demonstrated with a high-frequency (7.5 MHz) probe
24	Figure 3 LS, left lobe of liver. Showing the ligamentum teres as it descends towards the infero-anterior aspect of the liver
24	<i>Figure 4</i> LS, midline, through the left lobe, angled right towards the IVC. Showing the ligamentum venosum separates the caudate lobe from the rest of the liver. LPV = left portal vein
25	Figure 5. Shows how to asses the liver size by measuring the craniocaudal diameter
25	Figure 6 LS through the right lobe, demonstrating a Reidel's lobe extending below the right kidney
26	Figure 7 Oblique view of the porta hepatis where the common duct (cd) crosses the right branch of the PV with the hepatic artery in between
27	Figure 8 Oblique section of the porta hepatis visualizing three parallel running tubular structures, the CD, PV and IVC
28	Figure 9. Shows the right and left branches of the PV
28	Figure 10 Shows the PV radicle is associated with a branch of the hepatic artery and a biliary duct (arrows) within the hyperechoic fibrous sheath

29	Figure 11 (A) The porta hepatis. (B) A variant with the hepatic artery anterior to the duct. CD = common duct
29	Figure 12 The relationship of the biliary duct to the portal vein varies as the vessels become more peripheral. In (A) the duct lies anterior to the LPV; in (B) the duct is posterior to the LPV
30	Figure 13 .Hepatic vein of the patient with no cardiac problems, measure 10 mm directly anterior to the IVC while peripheral HVs measure only 3-4 mm
31	Figure 14. (A) Configuration of the hepatic venous system. (B) Inferior middle hepatic vein (arrow) a draining to the IVC
32	Figure 15 (a–d). US approach to the left hemiliver. By means of subxiphoid (a–c) and sagittal (d) views left liver segments can be visualized. LV, ligamentum venosum
33	Figure 16 (a–e). US approach to the right hemiliver. By means of subcostal (a–c) and intercostal (d–e) views right liver segments can be visualized
39	Figure 17 Expression of collagen α 1(I) in a model of cholestasis-induced liver fibrosis
40	Figure 18 Changes in the hepatic architecture (A) associated with advanced hepatic fibrosis (B). Following chronic liver injury, inflammatory lymphocytes infiltrate the hepatic parenchyma. Some hepatocytes undergo apoptosis, and Kupffer cells activate, releasing fibrogenic mediators. HSCs proliferate and undergo a dramatic phenotypical activation, secreting large amounts of extracellular matrix proteins. Sinusoidal endothelial cells lose their fenestrations, and the tonic contraction of HSCs causes increased resistance to blood flow in the hepatic sinusoid. Figure modified with permission from Science & Medicine (S28)
41	Figure 19 Cellular mechanisms of liver fibrosis
53	Figure 20 Cut section of two large hepatic hemangiomas showing central fibrosis and hyalin changes
57	Figure 21 Histological aspect of a well-differentiated HCC show in bile production

59	Figure 22 Cut surface of a hepatocellular carcinoma without a capsule,infiltrating the liver parenchyma
59	Figure 23 Cut section of a HCC with a nodular pattern and fibrous capsule
63	Figure 24 Cut section of the liver in metastatic liver disease in a patient with primary colon carcinoma, demonstrating subcapsular as well as diffuse intrahepatic metastases
64	Figure 25 Histology of hepatic metastasis of a neuroendocrine tumor with glandular differentiation and no signs of tumor necrosis
76	Figure 26 (A) Position of probe and explored volume (B) Shear wave propagation velocity according to the severity of hepatic fibrosis
79	<i>Figure 27</i> (A). Position of the ultrasound probe used for the ultrasound elastometry technique (B) Tissue elasticity distribution represented as color-coded images over conventional B-mode image.
82	Figure 28 FibroScan Probe
86	Figure 29 The ultrasound features of the liver edge; (a) a sharp edge with a high frequency probe, (b) a mildly blunted edge with a high frequency probe
91	<i>Figure 30</i> Figure 30 Liver stiffness values for each fibrosis stage (0–4).
92	Figure 31 Sonoelastography aspect of HCV chronic hepatitis (F2 on liver biopsy).
102	Figure 32 Real-time trans abdominal sonoelastography showing a 34 mm HCC nodule of the right lobe
103	Figure 33 EUS elastography showing a 14 mm HCC localized in the right hepatic lobe .
108	Figure 34 Haemangioma with type A elasticity.