Role of Sonoelastography and MR-Elastography in Differentiation of Breast Lesions

ESSAY

Submitted in partial fulfillment for Master Degree in Radiodiagnosis

 $\mathcal{B}y$

Ahmed Zaghlol Mohamed $\mathcal{M}.\mathcal{B}., \mathcal{B}.\mathcal{C}h.$

Under Supervision

Prof. Dr. Ola Gamal El-Din Nouh

Professor of Radiodiagnosis Faculty of Medicine – Ain shams University

Dr. Abeer Maghawry Abd El-Hamid
Assistant Professor of Radiodiagnosis
Faculty of Medicine – Ain shams University

Faculty of Medicine Ain Shams University 2010 دور قياس المرونة بالموجات فوق الصوتية والرنين المغناطيسي في التفرقة بين إصابات الثدي

رسالة مقدمة توطئه للحصول علي درجه الماجستير في الاشعة التشخيصية

مقدمة من

الطبيب / أحمد زغلول محمد مكالوريوس الطبع والمواحة

تحت إشراف

الأستاذ الدكتور/ علا جمال الدين نوح أستاذ الاشعة التشخيصية كلية الطب جامعة عين شمس

دكتور/ عبير مغاوري عبدالحميد أستاذ مساعد الاشعة التشخيصة كليه الطب جامعة عين شمس

كلية الطب جامعة عين شمس

Acknowledgement

First of all, Thanks to **Allah**, whose help I always seek and without his willing I will achieve nothing.

I would like to express my sincere gratitude and deep thanks to **Dr. Ola Gamal El-Din Nouh**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University for her guidance, helpful advice and constructive supervision of this work.

Words could not express the feeling of gratitude and respect I carry to **Dr. Abeer Maghawry Abd-El-Hamid,** Ass. Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University for her true concern, continuous advice, and encouragement which allowed completion of this study.

$List\ of\ Abbreviations$

ACR	American College of Radiology
AUC	Areas Under Curve
BIRADS	Breast Imaging Reporting And Data System
CAM	Combined autocorrelation method
CeMRI	Contrast enhanced magnetic resonance imaging
DCIS	Ductal carcinoma in situ
FN	False negatives
FOV	Field Of View
Gd	Elasticity
Gl	Viscosity
GRE	Gradient-recalled echo
Hz	Hertz
IBC	Inflammatory breast cancer
IDC	Invasive ductal carcinoma
ILC	Invasive lobular carcinoma
kpa	Kilopascals
LCIS	Lobular carcinoma in situ
μ	The shear modulus (stiffness)
MEG	Motion Encoding Gradient
MHz	Mega Hertz
MRE	Magnetic Resonance Elastography

NPV	Negative Predictive Value
POD	Probability of disease
PPV	Positive Predictive Value
RF	Radio-frequency
ROC	The receiver operating characteristic curve
ROI	Regions of interest
SE	Sonoelastography
SENSE	Sensitivity Encoding Sequence
SP	Specificity
SR	Strain Ratio
TDLUs	Terminal Ductal-Lobular Units
TE	Time of Echo
TI	Time of Inversion
TR	Time of Repetition
T.S	Tsukuba elasticity Score
TP	True positives
US	Ultrasonography
0	l e e e e e e e e e e e e e e e e e e e

List of Tables

Table	Title	Page
Table (1)	Comparison of different methods for	39
	measuring strain	
	Protocol of dynamic T1, contrast-enhanced &	
Table (2)	T2 weighted imaging of both breasts and	61
	MRE of one breast	
Table (3)	BIRADS-US assessment category	77
Table (4)	Comparison of sensitivity, specificity and	
	positive and negative predictive value for B-	82
	mode ultrasound, mammography and	
	sonoelastography	
	Comparison of sensitivity, specificity and	
Table (5)	positive predictive value of B-mode	89
	ultrasound, sonoelastography and strain ratio	07
	as a result of a study	

List of Figures

Figure	Title	Page
Fig (1)	Major anatomical components of female breast	5
Fig (2)	Arterial blood supply of the breast	9
Fig (3)	Lymphatic system serving the breast	10
Fig (4)	Tissue layers in breast US images	14
Fig (5)	Example of acoustic shadow caused by nipple	15
Fig (6)	Subtraction image of the normal breasts MRI	18
Fig (7)	Axial MR image through the center of the normal breasts following contrast administration	19
Fig (8)	Imaging of a phantom by US and SE	36
Fig (9)	The principle of Elastography	37
Fig (10)	Stress-strain curves acquired for five types of breast tissue	38
Fig (11)	A diagram showing the process of computing the strain in a tissue segment.	41
Fig (12)	Schematic diagram of the vibration elastography system	42
Fig (13)	A photograph of an old linear array transducer	44
Fig (14)	Images of breast mass	45
Fig (15)	Appropriate and inappropriate degrees of compression in performing Sonoelastography	46
Fig (16)	Elastographic images	47
Fig (17)	Normal breast tissue by US elastogram	49

Figure	Title	Page
Fig (18)	Normal lymph nodes of breast by US elastogram	50
Fig (19)	Block diagram of the external driver setup	52
Fig (20)	A diagram of electromechanical driver system	52
Fig (21)	A diagram of piezoelectric stack driver system	53
Fig (22)	Diagram of MRE pulse sequences	54
Fig (23)	Diagram of a standard MRE experiment	57
Fig (24)	MRE set up: patient in prone position with transducer attached from the side	59
Fig (25)	An example data from phantom with an average MRE shear modulus measurement and normal elastogram	62
Fig (26)	Example of MR elastography of tissue- simulating breast phantom containing embedded 2.5-cm-diameter nodule of stiffer material	63
Fig (27)	Images of fibrocystic change of the breast	65
Fig (28)	Diagram of Tsukuba elasticity scores	67
Fig (29)	Classification of elasticity scores	69-71
Fig (30)	SE images of pathologically proven clinical cases of different scores in female breasts lesions	
	a. Fibroadenoma with elasticity score of 1	71
	b. Fibroadenoma with elasticity score of 2	72
	c. Lobular carcinoma in situ with elasticity score 3	72

Figure	Title	Page
	d. Nonscirrhous type invasive ductal	73
	carcinoma with elasticity score of 4	
	e. Scirrhous type invasive ductal	73
	carcinoma with elasticity score of 5	
Fig (31)	New Elastographic classification of breast	
	masses during compression and after	74
	decompression	
Fig (32)	SE images during compression and after	
	decompression	
	(A)Fibrocystic change as exmple of score 1	75
	(B)Fibroadenoma as example of score 2	75
	(C)Fibroadenoma as example of score 3	76
	(D)Invasive lobular carcinoma as example of	76
	score 4	
Fig (33)	SE of invasive lobular carcinoma as BIRADS	79
	US 3	.,
Fig (34)	Flowchart concerning the proposed	
	integration of sonoelastography into BI-	80
	RADS-US classification system	
Fig (35)	A diagram shows Calculation of strain ratio	83
Fig (36)	A diagram of box plots of strain ratios (SRs)	84
	for benign and malignant focal breast lesions	
Fig (37)	Sonoelastographic images of calculation of	
	strain ratios in differentiation of focal breast	
	lesions	o =
	a. Strain ratio of a fibroadenoma	85
	b. Strain ratio of an invasive ductal	86
	cancer	86

Figure	Title	Page
	c. Strain ratio of an invasive lobular cancer	
Fig (38)	Color elastographic image of a tumor	89
Fig (39)	Sonoelastographic images of infiltrating ductal carcinoma	91
Fig (40)	A diagram showing Receiver operating characteristic curves for conventional US and sonoelastography	92
Fig (41)	 a. Fibroadenoma with BIRADs score of 4 by US, by elastography score was 2 b. Ductal infiltrating carcinoma with atypical features (BIRADS 3) and sonoelastography SCORE 4 	93 94
Fig (42)	SE images of fibroadenoma	96
Fig (43)	MRE of surgical specimen of invasive carcinoma	98
Fig (44)	MRE of invasive ductal carcinoma	98
Fig (45)	MRE of RT sided adenocarcinoma	99
Fig (46)	MRE of a fibroadenoma	100
Fig (47)	MRE of malignant breast lesion	102
Fig (48)	A diagram showing ROC curves for diagnostic accuracy of ceMRI and MRE	103

List of Contents

Subject	Pages
Introduction and aim of the work.	1
Anatomical considerations of the breast.	4
Pathology of breast lesions.	20
Physical and technical considerations.	
Manifestations of Sonoelastography(SE)	
and MR-Elastography (MRE) in	
differentiation of breast lesions.	
unierentiation of breast lesions.	

Subject	Pages
Summary and Conclusion.	105
References	108
Arabic Summary.	

Introduction

Elastography is a newly developed method which was introduced in 1991 and started to be used in a clinical setting in 1997 (*Garra et al.*, 1997).

Sonolastography is the technique of imaging the hardness of soft tissue. The resultant strain images show the behavior of tissue when subjected to mechanical stress (*Tan et al.*, 2008).

With the use of sonoelastography, the difference in hardness between normal and diseased tissue of the breast can be estimated by measuring the tissue strain induced by probe compression. Several clinical studies have reported that sonoelastography has the potential to differentiate between breast lesions (*Regner et al.*, 2006).

Sonoelastography of the breast allows an objective analysis of the viscoelastic properties of breast tissues and, therefore, corresponds to an improved and user-independent clinical breast examination that gives measurable physical quantities (*Tan et al., 2008*).

Sonoelastography represents a simple, fast, and noninvasive diagnostic method that may be a useful complement to US for less experienced radiologists in assessing solid nonpalpable breast lesions where specificity has proven higher (Scaperrotta et al., 2008).

Preliminary results suggest that real-time sonoelastography is a promising new approach for diagnosis of breast cancer with fair sensitivities and specificities (*Itoh et al.*, 2006).

In a clinical trial, Sonoelastography is considered equal or superior to mammography in differentiation of breast lesions. A combination of elastography and sonography had the best results in detecting cancer and potentially could reduce unnecessary biopsy (*Zhi et al.*, 2007).

MR elastography (MRE) of the breast represents a novel imaging technique that is based on the phase-contrast MRI technique and It can be used in combination with contrast enhanced breast MRI and allows imaging of the 3D propagation of low frequency acoustic waves within tissue (Marippan et al., 2010).

US elastography is typically restricted to the assessment of one-dimensional (1D) displacement data along the beam line. Thus, compared with full 3D techniques like MRE, it yields inherently more imprecise viscoelastic data (Marrippan et al., 2010).