STUDIES ON SOME FUNCTIONAL FROZEN DAIRY PRODUCTS

By

AMAL IBRAHIM ABDEL-MOHSIN ELDARDIRY

B.Sc. Agric. Sc. (Dairy Science and Technology), Cairo University, 1987 M.Sc. Agric. Sc. (Dairy Science and Technology), Cairo University, 2002

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Dairy Science and Technology)

> Department of Food Sience Faculty of Agriculture Ain Shams University

> > 2010

Approval Sheet

STUDIES ON SOME FUNCTIONAL FROZEN DAIRY PRODUCTS

By

AMAL IBRAHIM ABDEL-MOHSIN ELDARDIRY

B.Sc. Agric. Sc. (Dairy Science and Technology), Cairo University, 1987M.Sc. Agric. Sc. (Dairy Science and Technology), Cairo University, 2002

This thesis for Ph.D. degree has been approved by:

Dr. Fawzeya H. R. Abd-Rabo
Prof. Emeritus of Dairy Science, Dairy Science Department,
Faculty of Agriculture, Cairo University
Dr. Atef E. Fayed
Prof. of Dairy Science and Technology, Faculty of Agriculture,
Ain Shams University
Dr. Rezk A. Awad
Prof. of Dairy Science and Technology, Faculty of Agriculture,
Ain Shams University
Dr. Abdel-Moniem E. Hagras
Prof. Emeritus of Dairy Science and Technology, Faculty of
Agriculture, Ain Shams University

Date of Examination: 13 / 12 / 2010

STUDIES ON SOME FUNCTIONAL FROZEN DAIRY PRODUCTS

By

AMAL IBRAHIM ABDEL-MOHSIN ELDARDIRY

B.Sc. Agric. Sc. (Dairy Science and Technology), Cairo University, 1987 M.Sc. Agric. Sc. (Dairy Science and Technology), Cairo University, 2002

Under the supervision of:

Dr.Abdel-Moniem El-Badawy Abdel-Kader Hagras

Prof. Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr.Rezk Azab Awad

Prof. of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr.Fathy Anwar Abd-Elmalik

Sinior Researcher of Dairy Chimistry Department,
Animal Production research Institute,
Dokki- Giza.

ACKNOWLEDGMENT

Deepest, greatest and sincere thanks to **ALLAH** the most Merciful, Great and Clement God.

I wish to extend my deepest appreciation and sincere gratitude to **Prof. Dr. Abdel-Moniem E. A. Haggras,** Professor Emeritus of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University for the kind attention and greater help provided for the accomplishment of this work and for his efforts and supervising.

I wish to find the words that can help to express my great thanks to, **Prof. Dr. Rezk A. Awad,** Professor of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for his true guidance, encouragement and writing the manuscript.

Thanks and gratefulness to **Dr.Fathy A. Abd-Elmalik** Sinior Researcher of Dairy Chemistry Department, Animal Production Research Institute, Agriculture Research Center, for his help and offering facilities to accomplish Lab. Work.

I would like to thank all stuff members of Dairy Chemistry, Technology and Microbiology Departments, Animal production research Institute. Thanks also to every one who provided help or advised me to achieve this manuscript.

My deepest thanks to my parents, brothers, sister, son and daughter for helping me to achieve this manuscript.

ABSTRACT

Amal Ibrahim Abdel-Mohsen El-Dardiry: Studies on some functional frozen dairy products. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2010.

Functional foods has became a very popular and preferred for consumers all over the world. Dairy foods can play a key role as functional products to enhance consumers health Therefore, this study was planned in 3 parts to offer different recipes of frozen dairy desserts fortified with natural resources and enriched of healthy components. In first part the performance of sugar beet and Jerusalem artichoke as a source of dietary fiber were investigated. Sugar beet pulp either fresh or cooked was added in ratios 15, 20, 25% to the base formula while Jerusalem artichoke used in ratios 5, 10 and 15%. The functional components (fiber, Vit.C and flavonoids) increased by adding sugar beet or Jerusalem artichoke in the blend being highest with fresh sugar beet. All functional ice cream produces with high fiber contents produced by adding sugar beet(fresh, cooked) or Jerusalem artichoke were acceptable, being highly acceptable with the formula contains 15% cooked sugar while that of 10% Jerusalem artichoke was the best. The seconed part of study was planned to investigate the production of functional frozen dairy dessert with high natural antioxidant contents. Guava and apple pulps were used in ratios 15, 20,25% as a natural sources of antioxidants. The seconed part results showed that diatary fibers, ascorbic acid (Vit.C) and total flavonoids values were increased in functional ice cream fortified with guava or apple pulp. All functional frozen ice cream treatments with good flavour, body& texture, appearance and melting quality were obtained by using guava or apple pulps. From the obtained results, a highly quality attributes and consumer acceptability ice cream with high antioxidant contents can be produced by adding guava pulp up to 20% or apple pulp at low level 15% which scored the best. Production of functional frozen yoghurt with high lactulose contents and probiotic starter cultures was investigated in the third part of this study. Three yoghurt treatments were made using HLP and inoculated with 1.5% yoghurt culture (YC) + 1.5% *L. acidophilus* (T₁), or *L. casei* (T₂) or *B. bifidum* (T₃). Control treatment was made using HLP inoculated with 3% YC, and another control treatment using regular untreated permeate (RP) inoculated with 3% YC. Resultant frozen yoghurt became more smooth with less iceness by increasing lactulose content in the base mix. Functional synbiotic frozen yoghurt samples with HLP were more preferable to panilests than that of RP being the best with starter culture containing *L. acidophilus* or *B. bifidum* which gained the highest score.

Key words: Functional, fiber, antioxidants, lactulose, probiotic, sugar beet, Jerusalem artichoke, guava, apple, ice cream, frozen yoghurt.

CONTENTS

No.		Page
	LIST OF TABLES	V
	LIST OF FIGURES	VIII
	LIST OF ABBREVIATION	X
I	Introduction	1
Π	Review of Literature	6
1	Functional Dairy Products	6
2	Fortification of dairy products with fiber sources	10
3	Fortification of dairy products with fruit sources	28
3	as nutrient ingridients	
4	Functional dairy products with high lactulose	34
4	content	
III	Materials and Methods	41
1	Materials	41
1.1	Raw milk	41
1.2	Skim milk powder	41
1.3	Sucrose	41
1.4	Vanilla	41
1.5	Stabilizer & Emulsifier	41
1.6	Jerusalem Artichoke (Helionthus tuberosus)	42
1.7	Suger beet (Beta vulgaricus L. ssp. Vulgaris)	42
1.8	Guava fruit (<i>Psidium guajava L</i> .)	42
1.9	Apple fruit (Malus Sylvestris)	42
1.10	Activated charcoal	42
1. 11	Anaerogen saches for anaerobic conditions	42
1.12	Microbiological media	42
1.13	Starter culture	42
	Fresh permeate	43
2	Experimental procedure	43

2.1	Preparation of Jerusalem Artichoke	43
2.2	Preparation of suger beet pulp	43
2.3	Preparation of Guava fruit pulp	43
2.4	Preparation of Apple fruit pulp	44
2.5	Preparation of ice cream	44
2.6	preparation of milk permeate with high ratio of	44
	lactulose	
2.7	Preparation of frozen yoghurt	44
3	Methods	48
3.1	Determination of dry matter content	48
3.2	Determination of total protein content	48
3.3	Determination of fat content	48
3.4	Determination of ash content	48
3.5	Measurement of pH value	48
3.6	Determination of titratable acidity (T.A%)	48
3.7	Determination of Lactose content	49
3.8	Calculation of carbohydrate content	49
3.9	Measurement of specific gravity	49
3.10	Calculation of weight per gallon(kg)	49
3.10	Measurement of freezing point	49
3.11	Determination of ascorbic acid (vitamin C)	50
3.12	Determination of total flavonoids	50
3.13	Determination of crude fibers (CF)	50
3.14	Measurement of Acetaldhyde and diacetyl	50
	contents	
3.15	Calculation of the overrun	50
3.16	Determination of the melting resistance	51
3.17	Measurement of viscosity	51
3.18	Total bacterial counts	51
3.19	Enumeration of Bifidobacteria	51
3.20	Enumeration of Lactobacillus acidophilus	52

3.21	Lactobacilli count	52
3.22	Enumeration of Lactobacillus casei	52
3.23	Enumeration of yoghurt culture	52
3.24	Sesory evaluation	52
3.25	Statistical analyses	52
IV	Results and Discussion	53
Part I	Production of functional ice cream product	53
	with high fiber content	
1	Avarage compositional analysis of sugar beet	55
	pulp and Jerusalem artichoke	
2	Chemical Properties of functional ice cream	57
	mixes fortified with sugar beet pulp and	
	Jerusalem artichoke	
3	Physical properties and functional components	61
	of ice cream mixes fortified with sugar beet pulp	
	and Jerusalem artichoke	
4	Properties of functional ice cream products	72
	fortified with sugar beet and Jerusalem	
	artichoke as a source of food fibers	
Part II	Production of functional ice cream products	83
	with high content naturalantioxidant	
1	Avarage compositional analysis of guava	85
	pulpand apple pulp	
2	Chemical Properties of ice cream mixes fortified	85
	with guava and apple pulps	
3	Physical properties and functional components	90
	of ice cream mixes fortified with guava and	
	apple pulp	
4	Properties of resultant ice cream product	98
	fortified with guava pulp and apple pulp as a	
	source of food antioxidant	

Part	Production of functional frozen yoghurt with	110
III	high lactulose content	
1	Avarage compositional analysis of regular fresh	112
	permeate and high lactulose permeate	
2	Properties of functional bioyoghurt with high	112
	lactulose content	
A	Changes in pH value and titratable acidity during	112
	yoghurt manufacture	
В	Total bacterial and probiotic bacterial counts	116
	during bio-yoghurt manufacture	
3	Properties of functional frozen yoghurt with high	119
	lactulose content	
A	Mix properties	119
В	Products properties	126
V.	Summary and Conclusion	137
VI.	References	147
	Arabic Summary	

LIST OF TABLES

NO		Page
1	Composition of ice cream recipes with sugar pulp	54
	and erusalem artichoke (1000g)	
2	Avarage compositional analysis of sugar beet pulp	56
	(Beta vulgaricus L.ss Vaulgaricus) and Jerusalem	
	artichoke (Helionthus tuberosus).	
3	Chemical properties of functional ice cream mix	58
	fortified with sugar beet and Jerusalem artichoke	
	as source of food fibers.	
4	Physical properties of functional ice cream mixes	62
	fortified with sugar beet and Jerusalem artichoke	
	as source of food fibers	
5	Dynamic viscosity of functional ice cream mixes	70
	fortified with sugar beet and Jerusalem artichoke as	
	source of food fibers at different shear rates	
6	Properties of resultant functional ice cream	73
	fortified with sugar beet and Jerusalem artichoke	
	as source of food fibers.	
7	Organoleptic properties of functional ice cream	80
	fortified with sugar beet and Jerusalem artichoke	
	as source of food fibers	
8	Composition of ice cream recipes with guava and	84
	apple pulp as a source of antioxidant.	
9	Avarage compositional analysis of apple pulp(86
	Malus Sylvestris) and guava pulp (L Psidium	
	guajava.)	
10	Chemical properties of functional ice cream mixes	87
	fortified with guava and apple as a source of	
	natural antioxidants	

11	Physical properties of functional ice cream mixes	91
	fortified with apple and guava as source of natural	
	antioxidants.	
12	Dynamic viscosity of functional ice cream mixes	99
	fortified with guava and apple as source of natural	
	antioxidants at different shear rates.	
13	Some chemical properties of functional ice cream	101
	fortified with guava and apple as source of	
	natural antioxidants.	
14	Organoleptic properties of functional ice cream	107
	fortified with guava and apple as source of	
	natural antioxidants.	
15	Mix composition of frozen yoghurt recipes with	111
	different starter cultures (kg/100 kg mix).	
16	Chemical characteristics of regular fresh Permeate	113
	and high lactulose permeate.	
17	Changes in pH and titratable acidity of frozen	114
	yoghurt during incubation period	
18	Total bacterial and probiotic bacterial counts (Log	117
	cfu/ ml) of functional yoghurt with high lactulose	
	permeate during the incubation period	
19	Properties of functional frozen yoghurt mixes with	120
	high lactulose content.	
20	Dynamic viscosity of functional frozen	123
	yoghurt mix with high lactulose content.	
21	Some properties of functional frozen yoghurt	125
	made using high lactulose contents and probiotic	
	starter cultures.	
22	Total viable bacterial counts (log cfu/ml) of	129
	synbiotic functional frozen yoghurt mix and during	

- frozen storage at -20°C up to 3 months.
- 23 Survival of probiotic bacteria strains (log cfu/ml) 131 in symbiotic frozen yoghurt with high lactulose permeate, during frozen storage at-20 °C up to3 months
- 24 Organoleptic properties of functional frozen 134 yoghurt made using high lactulose and probiotic starter cultures

LIST OF FIGURES

NO		Page
1	Bioactive elements found in dairy foods.(Goldberg,	6
2	1994). Schemetic digram for the method of bioyoghurt manufacture	47
3	Fiber content of functional ice cream mixes with sugar beet pulp either fresh or cooked and Jerusalem artichoke.	65
4	Vit. C (mg/100g) of functional ice cream mixes with sugar beet pulp either fresh or cooked and Jerusalem artichoke.	67
5	Flavonoids(μ g/g) of functional ice cream mixes with sugar beet pulp either fresh or cooked and Jerusalem artichoke.	68
6	Dynamic viscosity of functional ice cream mixes with sugar beet pulp (A) and Jerusalem artichoke (B).	71
7	Overrun (%)of functional ice cream made with sugar beet pulp and Jerusalem artichoke.	75
8	Loss(%) after of functional ice cream mixes with sugar beet pulp and Jerusalem artichoke.	77
9	Total score of organoleptic properties of functional ice cream with high fiber content.	81
10	Fiber content of functional ice cream mixes with apple and guava pulps.	94
11	Vit. C(mg/100g) of functional ice cream mixes with apple and guava pulps.	95
12	Flavonoids (μ/g) of functional ice cream mixes with apple and guava pulps.	97

13	Dynamic vicosity of functional ice cream mixes	100
	with guava pulp (A) and apple pulp.	
14	Overrun % of functional ice cream mixes with apple and guava pulps.	103
15	Loss % of functional ice cream mixes with apple and guava pulps.	105
16	Total score of organoleptic properties of functional ice cream with high natural antioxidant.	108
17	Changes in titratable acidity (A) and pH value (B) of bio-yoghurt during the incubation period.	115
18	Total bacterial count (A) and probiotic bacterial count (B)of functional bio- yoghurt during the incubation period (log cfu/ml).	118
19	Dynamic vicosity of functional frozen yoghurt mix with high lactulose content.	124
20	Total viable bacterial counts (log cfu/ml) of synbiotic frozen yoghurt during frozen storage at - 20 °C.	129
21	Survival of probiotic strains (Log cfu/ml) in synbiotic frozen yoghurt made with high lactulose permeate, during frozen storage at-20 °C for 3 months	132
22	Total score of organoleptic properties of functional frozen yoghurt made using high lactulose permeate and probiotic starter cultures.	150