A study of assessment of environmental exposure to Cadmium as a risk factor of osteoporosis

Thesis

Submitted for Partial Fulfillment of Master Degree In Endocrinology and metabolism

By Riham Mohamed Moanis Mahemoud

M.B., B.Ch., Ain Shams University

Under Supervision of

Prof. Dr./ Fadilla Ahmed Gadalla

Professor of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Dr./ Iman Zaky Ahmed

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Dr./ Elsayed Elsayed Elokda

Lecturer of Environmental and Occupational Medicine Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2010

** Acknowledgement **

First and foremost thanks to Allah, the most merciful, who gave me everything including the ability to fulfill this work.

I wish to express my deepest gratitude and profound appreciation to **Prof. Dr./ Fadilla Ahmed Gadalla**, Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for her kind supervision, valuable instructions, continuous help, patience and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was great honor to me to work under her kind supervision.

My deepest gratitude to **Dr./ Iman Zaky Ahmed**, Lecturer of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for her precious help and her continuous encouragement.

Also, I would like to thank **Dr. El-Sayed El-Sayed El-Okda**, Lecturer of Community, Faculty of Medicine, Ain Shams University, for his great helps in collection of cases and statistics.

Last but not least I want to thank my Mother and my patients without their help, this work could not have been completed.

•	<u>Acknowledgement</u>	••••
•	<u>Dedications</u>	••••
•	Contents	i
•	List of Abbreviations	V
•	List of Tables	vii
•	List of Figures	X
•	<u>Introduction</u>	••••
•	Aim of the Study	
•	<u>Cadmium, Lead</u>	•••••
•	Cadmium, Lead and their effects on human health	1
•	Heavy Metals toxicity	1
•	Cadmium	7
•	Cadmium emission	10
•	Sources of Cadmium exposure	14
•	Occupational exposure	15
•	Occupations in General Industry which may be Associated v	with
	Cadmium Exposure	20
•	Non Occupational exposure	24
•	Health Outcome of Cadmium Exposure	26
•	Biological Testing Methods for Cadmium Exposure	41
•	Cadmium Exposure Limits	47
•	Treatment of Cadmium Poisoning	49
•	Prevention of Cadmium Poisoning	50
•	Lead and its effect on human health	51

•	Sources of lead poisoning	.53
•	Applications	55
•	Measurement	64
•	Exposures and demographics	65
•	Laboratory Studies	.66
•	Imaging Studies	68
•	Treatment	.69
•	Deterrence/Prevention	73
•	Patient Education	.75
•	Endocrine Disruptors	••••
•	Members of Endocrine Disruptors	.77
•	Mechanism of action of endocrine disruptors	80
•	Relation between dose and effect of endocrine disruptors	.81
•	Developmental Exposures	.81
•	Effects of endocrine disruptors on wildlife	.84
•	Health effects of endocrine disruptors on human	86
•	How to reduce the risk of exposure to endocrine disruptors	.92
•	Osteoporosis	••••
•	Osteoporosis over view	.94
•	Causes of osteoporosis	.98
•	There are factors that are completely under person's control	105
	1. <u>Diet</u>	105
	A. Calcium	105
	B. Vitamin D	109

		C. Other Vitamins and Minerals	111
		D. Protein	111
		E. Caffeine	112
	2.	<u>Exercise</u>	112
	3.	Smoking	112
	4.	<u>Alcohol</u>	115
•	Screenin	g of osteoporosis	116
	1.	Bone Densitometry	116
	2.	Quantitative Computed Tomography	118
	3.	Peripheral measurements	119
	4.	Laboratory Assessment	120
•	Treatme	nt and drugs for osteoporosis	12 1
	l.	Prophylaxis	121
	II.	Medications	122
		1. Calcitonin Analogues	122
		2. Bisphosphonates	124
		3. Selective estrogen receptor modulators	127
		4. Nutritional Supplements	128
		5. Parathyroid Hormone	128
		6. Hormone Replacement Therapy	130
	III.	Physical Therapy	133
•	Cadmiun	າ, osteoporosis and calcium metabolism	133
•	Itai-itai d	isease in Japan, osteomalacia and osteoporosis	140
•	<u>Patients</u>	s and Methods	•••••
•	Results.		• • • • • • •

•	<u>Discussion</u>
•	<u>Summary</u>
	<u>Conclusion</u>
	<u></u> <u>References</u>
	Arabic Summary

Introduction

Cadmium is identified as a new class of endocrine disruptors, poses a threat to human health because of its long retention (decades) in the kidneys (Aoshima et al., 2003).

Cadmium (Cd²⁺) is a widespread environmental pollutant present in food (mainly cereals, vegetables, & shellfish) & tobacco. Because tobacco smoke is a source of Cadmium contamination, the Bone skeleton of smoker females (pre & post-menopausal) & males are generally considered to be at increased risk of exposure to toxic levels of Cadmium, not only smokers but also welders, battery factories workers and smelters are exposed to toxic levels of Cadmium (Mussalo-Rauhamaa et al., 1986).

Cadmium has a long biological half-life of 15-30 years mainly due to its low rate of excretion from the body, and accumulates over time in blood, kidney, and liver. Long-term exposure to cadmium may cause kidney and bone damage the most well-known example is the itai-itai disease in Japan. So there relationship between tubular damage and osteoporosis as urinary cadmium used as the dose estimate for cadmium (Henson and Anderson, 2000).

Cigarette smoking while being an important source of cadmium intake is also independently associated with bone loss and thus is a significant confounder of the relationship between cadmium exposure and bone loss. Osteoporosis may be estimated objectively by measurement of bone mineral density (BMD), Dual x-ray Absorptiometry (DXA) (Honda et al., 2003).

Osteoporosis is a common metabolic disease characterized by low bone mass & microarchitectural deterioration of bone tissue, it is a major cause of morbidity worldwide (Alfven et al., 2000).

Women who smoke one pack of cigarettes each day throughout adulthood will, by the time of menopause, have an average deficit of 5 to 10 percent in bone density, which is sufficient to increase the risk of fracture (**Riggs et al., 2005**).

Cadmium induced reduction in the Hydroxylaion of 25-HCC to the active form 1,25 DHHCC occurs following renal tubular damage by cadmium. The decreased activation of vitamin D due to cadmium induced renal tubular damage has been considered to be crucial for the induction of bone effects of cadmium (**Buchet et al., 1995**).

Cadmium may also act directly on bone. An in vitro study of culture of a clonal osteogenic cell showed that the mineralization of the cells was significantly decreased following the additional of Cadmium ions together with a decrease in collagen content and alkaline phosphatase activity. This indicates that Cadmium may interfere directly with the mineralization of bone cells (Miyahara et al., 1990).

Animal studies have shown Cadmium to stimulate the formation activity of osteoclasts, breaking down the collagen matrix in bone to release calcium into blood (Bhattacharyya et al., 1988).

Epidemiological studies provided equivocal results concerning the effects of lead and cadmium on Bone density (Bhattacharyya et al., 1988).

$A \mathsf{im} \; \mathsf{of} \; \mathsf{the} \; W \mathsf{ork}$

Aim of this work is to study the relation of environmental exposure of Cadmium & osteoporosis in male smokers.

Cadmium, Lead and Their Effects on

Human Health

Heavy Metals:

A heavy metal is any of a number of high atomic weight elements, which have the properties of a metallic substance at room temperature. There are several different definitions concerning which elements fall in this class designation. According to one definition, heavy metals are a group of elements between copper and bismuth on the periodic table of elements having specific gravities greater than 4 (Kuhn, 2004).

Heavy metal toxicity:

Heavy metal toxicity represents an uncommon, yet clinically significant medical condition, if unrecognized or inappropriately treated, heavy metal toxicity can result in significant morbidity and

mortality. The periodic table contain 105 elements, of which 80 are considered metals: Toxic effects in humans have been described for less than 30 of these. Many metals are essential to biochemical processes, and others have found therapeutic uses in medicine. Iatrogenic metal toxicity may occur with bismuth, gold, gallium, lithium and aluminum, species. Intentional or unintentional ingestion of arsenic has been notions as a means of suicide and homicide (*Diffus*, 2004).

However, occupational exposure to heavy metals has accounted for the vast majority of poisoning throughout human history. Toxic effects of chronic exposure to heavy metals are far more common than acute poisoning. Chronic exposure can lead to variety of conditions depending on route of exposure, and the metabolism and storage of the specific element in question (*Baselt, 2000*).

For example, chronic exposure to cobalt dust has been associated with the development of pulmonary fibrosis that can lead to core-pulmonale. This hard metal pneumoconiosis has been described for other metal dusts. Chronic inhalation of high doses of cadmium also cause fibrotic and emphysematous lung damage but it also has major effects on bone and genitalia. Itali-Itali (ouch-ouch) disease, a syndrome of chronic renal failure and osteoporosis described in Japan, is often attributed to high levels of naturally occurring cadmium in the soil coupled with increased industrial exposures (Mench et al., 1998).

Pathophysiology of heavy metals toxicity:

The pathophysiology of the heavy metal toxidromes remain relatively constant: For the most part, heavy metals bind to oxygen, nitrogen, and sulfhydryl groups in proteins, resulting in alterations of enzymatic activity. This affinity of metal species for sulfhydryl groups serves a protective role in heavy metal homeostasis as well. Increased synthesis of metal binding proteins in response to elevated levels of a number of metals is the body's primary defense mechanism against poisoning. For example, the

metalloproteins are induced by many metals. These molecules are rich in thiol ligands, which allow high affinity binding with cadmium, copper, silver, zinc, lead and others. Other proteins involved in both heavy metals transport and excretion through the formation of ligands are ferritin, transferring, albumin and hemoglobin (*Cravery*, 1998).

Although ligand formation is the basis for much of the transport of heavy metals throughout the body, some metals may compete with ionized species such as calcium and zinc to move through membrane channels in the free ionic form. For example, lead follows calcium pathway in the body, hence, its deposition in bone and gingivae (*Keating*, 1997).

Nearly all organ systems are involved in heavy metals toxicity, however the most commonly involved organ systems include the central and peripheral nervous system, gastrointestinal tract, haemopoietic, renal and cardiovascular system. To a lesser extent, lead toxicity involves the musculoskeletal and reproductive

systems. The systems affected and the severity of the toxicity vary with the particular heavy metal involved the age of individual, and the level of toxicity (*Keating*, 1997).

Frequency:

In the U.S: heavy metals toxicity by chronic lead exposure is the most commonly encountered. The National Health and Nutrition Examination survey (NHANES III) conducted from 1988-1999 found that 0.4% of persons aged 1 year and older have blood levels of lead of 25 mg/dL or higher. The data also noted that, among those aged 1-5 years, an estimated 1.7 million children have blood levels greater than 10 mg/dL. The syndrome of childhood plumbism caused by the ingestion of lead is believed to affect more than 2 million American pre-school aged children. Lead toxicity has a significantly higher prevalence among the population and African, American in lower figures Reliable socioeconomic areas. the prevalence of mercury and arsenic toxicities are not