Study of relation between 25 Hydroxy Cholecalciferol & Cardiovascular Complications in Type2 Diabetic Patients on Chronic Hemodialysis Treatment

Thesis
Submitted for partial fulfillment of Master Degree in Nephrology

By Mohammed Tawfik Refaat

M.B.B.Ch.
Faculty of medicine, Zagazig University

Under Supervision of

Prof. Mohammed Aly Ibrahim

Professor of Internal Medicine and Nephrology Faculty of Medicine- Ain Shams University

Dr. Yasser El-Shahawi

Lecturer of Internal Medicine and Nephrology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2011

دراسة العلاقة بين (25) كولي كالسيفرول ومضاعفاته على القلب والدورة الدموية فيما بين مرضى البول السكري تحت العلاج بالاستصفاء الدموي

بحث علمي توطئة للحصول على درجة الماجستير في أمراض الكلي

مقدمة من الطبيب/ محمد توفيق رفعت محمود بكالوريوس الطب والجراحة كلية الطب ـ جامعة الزقازيق

تحت إشراف **الأستاذ الدكتور/ محمد علي إبراهيم** أستاذ الباطنة العامة والكلي كلية الطب - جامعة عين شمس

الدكتور/ ياسر الشهاوي مدرس الباطنة العامة والكلى كلية الطب - جامعة عين شمس

List of Contents

Introduction and Aim of the Work	. 1
Review of Literature:	
Chapter (1): Vitamin D	5
Chapter (2): Cardiovascular disease in CKD	35
Chapter (3): Vitamin D and Cardiovascular in CKD	59
Subjects and Methods	77
Results	91
Discussion	124
Summary and Conclusion	141
Recommendations	147
References	148
Master Sheet	
Arabic Summary	

List of Tables

Table No.	Title	Page
Table (I)	Nomenclature of vitamin D precursors and metabolites	7
Table (II)	Vitamin D forms	8
Table (III)	Manifestations of cardiovascular disease in	
1 4676 (111)	chronic kidney disease and associated putative	46
	risk factors	
Table (IV)	Vitamin D status	60
Table (V)	Potential mechanisms involved in vitamin D	66
	protection of the cardiovascular system	00
Table (1)	Demographic characters of cases and controls	91
Table (2)	Frequency of smoking among studied cases	02
	and controls	92
Table (3)	Vitamin D in cases and controls	92
Table (4)	Glucoparameters in cases and controls	93
Table (5)	C reactive protein in cases and controls	93
Table (6)	Laboratory results in cases and controls	94
Table (7)	Serum electrolytes in cases and controls	94
Table (8)	Hematological results in cases and controls	95
Table (9)	Hepatitis C antibody in cases and controls	95
Table (10)	lipid profile in cases and controls	96
Table (11)	Blood pressure in cases and controls	96
Table (12)	Demographic characteristic and laboratory	
	finding for Diastolic dysfunction versus	97
	normal diastolic function groups	

Table No.	Title	Page
Table (13)	Glucoparameters for Diastolic dysfunction	98
	versus normal diystolic function groups	98
Table (14)	lipid profile for diystolic dysfunction versus	98
	normal diystolic function groups	90
Table (15)	Blood pressure for Diystolic dysfunction versus normal diystolic function groups	99
Table (16)	Demographic characteristic and laboratory	
	finding for systolic dysfunction versus normal	99
	systolic function groups	
Table (17)	Glucoparameters for systolic dysfunction	100
	versus normal systolic function groups	100
Table (18)	lipid profile for diystolic dysfunction versus	100
	normal diystolic function groups	100
Table (19)	Blood pressure for systolic dysfunction versus	101
	normal systolic function groups	101
Table (20)	Correlation between 25cholecalceferol and glycemic profile	101
Table (21)	Correlation between 25 Vitamin D and Blood pressure, weight gain and duration of dialysis	104
Table (22)	Correlations between C reactive protein, and	105
	parathormone	
Table (23)	Correlation between C reactive protein, Wight gain and lipid profile	108
Table (24)	Multivariate analysis of possible risk factors for cardiovascular diseases	112

List of Figures

Fig. No.	Title	Page
Fig. (I)	Sources, sites, and processing of vitamin (vit)	
	D metabolites	9
Fig. (II)	Regulation of gene expression by VDR	15
	ligands	15
Fig. (III)	Metabolism of 25-Hydroxyvitamin D to 1,25	
	Dihydroxyvitamin D for Nonskeletal	24
	Functions.	
Fig. (IV)	Traditional and nontraditional risk factors	
	associated with chronic kidney disease	38
Eig (V)	·	
Fig. (V)	Hypothetical associations between vitamin D	64
F: (4/F)	insufficiency and CVD.	
Fig. (VI)	Inverse relationship between plasma matrix	60
	metalloproteinase 9 (MMP-9) levels and	68
	vitamin D status (25-hydroxyvitamin D).	
Fig. (VII)	Changes of left ventricular mass (LVM) index	
	before and after calcitriol therapy in	71
	hemodialysis patients with secondary	/ 1
	hyperparathyroidism	
Fig. (VIII)	Stimulation of the renin-angiotensin system in	
	mutant mice lacking either the vitamin D	
	receptor (VDR) gene or the 25-	75
	hydroxyvitamin D 1a-hydroxylase (1a-hyd)	
	gene.	

Fig. No.	Title	Page
Fig. (1)	Sex distribution of cases controls	113
Fig. (2)	Mean age in cases and control	113
Fig. (3)	Frequency of cases with abnormal ECG	114
Fig. (4)	Percentage of diastolic dysfunction in cases	114
Fig. (5)	Percentage of systolic dysfunction in cases	115
Fig. (6)	Percentage of Left ventricle hypertrophy in cases	115
Fig. (7)	Percentage of abnormal tricuspid valve in cases	116
Fig. (8)	Percentage of abnormal mitral valve in cases	116
Fig. (9)	Percentage of abnormal left atrium in cases	117
Fig. (10)	Percentage of abnormal pericardium in cases	117
Fig. (11)	Percentage of akinetic segment valve in cases	118
Fig. (12)	Percentage of abnormal tricuspid valve in cases	118
Fig. (13)	Frequency of smoking among cases and controls	119
Fig. (14)	Mean 25 vitamin D in cases and controls	120
Fig. (15)	Mean CRP in cases and controls	121
Fig. (16)	Mean blood pressure in cases and controls	122
Fig. (17)	Lipid profile in cases and controls	123

List of Curves

Curve No	Title	Page
Curve (1)	Correlation between 25 Vitamin D and fasting blood glucose	102
Curve (2)	Correlation between 25 Vitamin D and hemoglobin A1C	103
Curve (3)	Correlation between CRP and Phosphorous	106
Curve (4)	Correlation between CRP and Parathormone	107
Curve(5)	Correlation between C reactive protein and weight gain	109
Curve (6)	Correlation between 25 vitamin D and low density lipoprotein	110
Curve (7)	Correlation between 25 vitamin D and main artearial pressure	111

Lists of Abbreviations

1,25-	1,25-Dihydroxyvitamin D3;
(OH)2D3	
25(OH)D	25-hydroxyvitamin D
AC	arterial calcifications
ACE	Angiotensin converting enzyme
AF-1	activation function-1
ANP	Atrial natriuretic peptide
AP	activator protein
CAC	Coronary artery calcification
CD	cyclin-dependent
CKD	Chronic kidney disease
CRP	C-reactive protein
СТ	Calcitonin
CV	cardiovascular
CVD	cardiovascular disease
DCs	dendritic cells
DHC	Dehydrocholesterol
DMMS	Dialysis Morbidity and Mortality Study
ESRD	End stage renal disease
Fig.	Figure
FMD	flow-mediated dilation
G.F.R	Glomerular filtration rate
GI	gastrointestina

GM-CSF	granulocyte-macrophage colony-stimulating
	factor
Hb	Hemoglobin
HbA _{1c}	hemoglobin A _{1c}
HD	Haemodialysis
HDL	high-density lipoprotein
НОРЕ	Heart Outcomes and Protection Study
HS	highly significant
IBDs	Inflammatory bowel diseases
IFN-γ	interferon
IL-6	interleukin- 6
INR	International normalization ratio
IR	Insulin resistance
K/DOQI	Kidney Disease Outcomes Quality Initiative
ко	KnoKout
LBD	ligand binding domain
LDL	low density lipoprotein
LURIC	LUdwigshafen RIsk and Cardiovascular Health
LV	left ventricular
LVH	left ventricular hypertrophy
MAP	Mean arterial pressure
MDRD	Modification of Diet in Renal Disease
MMP	Matrix metalloproteinases
NF	nuclear factor

NO	nitric oxide
NS	non significant
NSB	Non specific binding
OCT	oxa-calcitriol
PBMCs	peripheral blood mononuclear cells
PTH	parathyroid hormone
RA	Rheumatoid arthritis
RANKL	receptor activator of NFB ligand
RAS	Renin angiotensin system
RT	Right
RXR	Retinoid X receptor
S Bl.P	Systolic blood pressure
S.	Serum
SD	Standard deviation
Sig	statistically significant
SLE	Systemic lupus erythematosus
SNX	subtotal nephrectomy
SPACE	Secondary Prevention with Antioxidants of
	Cardiovascular Disease in End-Stage Renal Disease
Th2	T-helper cells
tHey	High homocysteine
TIMP-1	tissue inhibitor of metalloproteinase
TNF	tumor necrosis factor
TNF-a	tumor necrosis factor (a)

UV	Ultra vilot
UVB	Ultra vilot beams
VDR	vitamin D receptor
VDREs	vitamin D3 response elements
VS	Versus
WHI	Women's Health Initiative
WT	wild type

Introduction

Cardiovascular disease is an important cause of mortality in patients undergoing maintenance dialysis, accounting for almost 50 percent of deaths (*USRD*, 2008). It is an important source of morbidity, as the annual probability of hospital admission for heart failure (HF) and/or myocardial ischemia is approximately 20 percent in these patients (*Trespalacios and Taylor*, 2003).

A growing body of evidence suggests that vitamin D deficiency may adversely affect the cardiovascular system. The study showed that heart attack risk was doubled in people with 25 (OH) vitamin D levels <15 ng/ml vitamin D receptors have a broad tissue distribution that includes vascular smooth muscle, endothelium, and cardiomyocytes (*Wang et al., 2008*).

Myocardium is an important target tissue for vitamin D-mediated effects on genomic and non-genomic levels (Nibbelink et al., 2007).

Other experience also shows that vitamin D plays a crucial role in heart function vitamin D deficiency has been shown to diminish contractile function of heart muscle cells, contribute to endothelial dysfunction, and cause distortions in

heart muscle structure (triggering hypertrophy, or abnormal heart muscle growth); vitamin D deficiency also increases smooth muscle growth in the coronary artery wall a process that leads to atherosclerosic plaque formation (London GM et al., 2007).

Vitamin D deficiency is associated with congestive heart failure (Zittermann A, 2006).

Vitamin D deficiency is associated with obesity (Arunabh et al., 2003), glucose intolerance (Hypponen E, and Power C, 2006), the metabolic syndrome, hypertension and dyslipidemia, which are all well-established CVD risk factors (Hintzpeter et al., 2007).

The research done at the University of Chicago has determined that vitamin D deficiency increases blood pressure, while vitamin D supplementation significantly decreases systolic blood pressure (*Pfeifer M et al., 2001*).

A new study suggests that Vitamin-D deficiency appears to be a risk factor for developing cardiovascular disease (Wang et al., 2008).

The cardiovascular mortality is decreased in haemodialysis patients who took oral alfacalcidol at the clinical

dosage, suggesting that this treatment may improve the outcome of the patients (Shoji et al., 2002).

25D was a better predictor of clinical events finding observed in ESRD extends to the predialysis phase. Our data indicate that 25D is a better risk marker than 1,25D in CKD (Wolf et al., 2007).

25 (OH) D deficiency was considered to be of minor clinical consequence. Recent data, however, show that 25(OH) D levels independently correlate with parathyroid hormone (PTH) levels and administration of pharmacological doses of 25 (OH) D can suppress the parathyroid gland. The national Kidney Foundation's Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines now recommend supplementation guided by regular measurement of 25 (OH) D levels in CKD patients (AL-ALY, et al., 2007).