

Microbial biotransformation of vitamin D_3 into biologically active 1 α , 25-dihyroxyvitamin D_3

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Master degree in pharmaceutical sciences (Microbiology and Immunology)

Ву

Ahmad Mohammad Abbas Nada

Bachelor of Pharmaceutical Sciences, Faculty of Pharmacy, Ain Shams University, 2004

Under Supervision of

Prof. Dr. Nadia Abdel-Haleem Hassouna

Professor of Microbiology and Immunology Faculty of Pharmacy, Ain Shams University

Prof. Dr. Mohammad Mabrouk Aboulwafa

Professor and Head of Department of Microbiology and Immunology Faculty of Pharmacy, Ain Shams University

Dr. Khaled Mohamed Aboshanab

Lecturer of Microbiology and Immunology Faculty of Pharmacy, Ain Shams University

التحويل الحيوي الميكروبي لفيتامين دم الى ١ ألفا، ٢٥- ثنائي هيدروكسي فيتامين دم الفعال بيولوجيا

رسالة مقدمة

لنيل درجة الماجستير في العلوم الصيدلية (الميكروبيولوجيا والمناعة)

إعداد

أحمد محمد عباس ندا

بكالوريوس العلوم الصيدلية كلية الصيدلة – جامعة عين شمس – ٢٠٠٤

تحت إشراف

الأستاذة الدكتورة/ نادية عبد الحليم حسونة

أستاذ الميكروبيولوجيا والمناعة كلية الصيدلة – جامعة عين شمس

الأستاذ الدكتور/ محمد مبروك أبو الوفا

أستاذ و رئيس قسم الميكروبيولوجيا والمناعة كلية الصيدلة – جامعة عين شمس

الدكتور/ خالد محمد أبو شنب

مدرس الميكروبيولوجيا والمناعة كلية الصيدلة – جامعة عين شمس

ACKNOWLEDGEMENTS

First, I would like to thank **Prof. Dr. Nadia Hassouna**, Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, for her continuous advice and valuable guidance throughout my study.

I would like to express my deep gratefulness to **Prof. Dr. Mohamed Mabrouk Aboulwafa**, Professor and Head of Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University for suggesting this point, his valuable follow up, advices and deep revision of the thesis.

I also want to express my gratitude to **Dr. Khaled Mohamed Aboshanab**, lecturer of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University who taught me different techniques regarding my work and for his great efforts throughout the study.

Many thanks are also extended to all my **colleagues** and all **workers** in the Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University for their help and support.

Finally, I would like to express my gratefulness and everlasting love to my **parents**, my **two brothers** and my **fiancée** for their sincere help, continuous prayers, encouragement and motivation during my study.

والحمد الله ربح العالمين.....

Ahmed Mohamed Abbas Nada

Contents

TITLE	
Introduction	
Literature Review	3
Nature of vitamin D	3
Function of vitamin D	4
Sources of vitamin D	4
Biosynthesis of Vitamin D ₃	5
Metabolism of Vitamin D ₃	6
Vitamin D hydroxylases	7
Physiological importance of calcitriol	8
Consequences of vitamin D ₃ deficiency	9
History of Vitamin D ₃ Biotransformation	10
Actinomycetes and their biotechnological importance	16
Materials and Methods	24
1-Microorganisms	24
2- Vitamin D ₃ and its derivatives	24
3-Chemicals	24
4-Culture media	
4.1. Ready-made media and media ingredients	
4.2. Media formulated upon use	27
4.2.1. Medium used for selective recovery of soil isolates	27
4.2.2. Medium used for long term preservation of soil-recovered	
isolates and the standard <i>A. autotrophica</i> strain	
4.2.3. Basal medium used for vitamin D ₃ biotransfromation	28 29
4.2.4. Media used for optimization of vitamin D ₃ biotransfromation	
by the test isolate	29
4.2.4.1. Media for preculture	
4.2.4.2. Media for main culture	
4.2.5. Medium used for cell suspension during sonication of the test isolate cells	
4.2.6. Media used for identification of the test isolate	
5. Devices	
6. Isolation and maintenance of microorganisms	34
7. Screening of the collected isolates for vitamin D ₃ biotrans-	35
formation	

7.1. Biotransformation process	35
7.2. Extraction process for vitamin D ₃ and its metabolites	35
7.2.1. Preparation of growth supernatant	35
7.2.2. Extraction of vitamin D ₃ and its metabolites	36
7.2.3. Concentration of the organic extract	36
7.3. Analysis techniques of vitamin D ₃ metabolites	
7.3.1. Thin layer chromatography (TLC) analysis	37
7.3.2. Mass spectrometry (MS) analysis	38
7.3.3. TLC/ HPLC coupled assay	38
8. Strain identification	39
8.1. Microscopic examination	39
8.2. Growth characteristics and biochemical reactions	39
8.2.1. Growth on mannitol salt agar	39
8.2.2. Growth on MacConkey agar	39
8.2.3. Survival at 50°C for 8 hrs	40
8.2.4. Catalase test	40
8.2.5. Starch hydrolysis	40
8.2.6. Casein hydrolysis	40
8.2.7. Gelatinase production	41
8.2.8. Decomposition of L-tyrosine	
8.2.9. Citrate utilization	41
8.2.10. Acid production from sugars	
8.2.11. Urease test	
8.2.12. Resistance to ampicillin	42
8.3. Biolog microbial identification system assay	42
9. Physiological optimization of vitamin D ₃ biotransformation by	43
the test isolate	
9.1. Preculture and preparation of inoculum	43
9.2. Main culture	44
9.3. Effect of different factors on the biotransformation of vitamin	44
D_3	
9.3.1. Effect of different culture media used for preculture	
9.3.2. Effect of timing of the vitamin D ₃ addition	
9.3.3. Effect of duration of the bioconversion process	
9.3.4. Effect of Initial pH	46
9.3.5. Effect of the initial quantity added of vitamin D ₃	46
9.3.6. Effect of different basal medium ingredients	47
9.3.6.1. Effect of separate removal of some basal medium	47
ingredients	

9.3.6.2. Effect of carbon source	47	
9.3.6.3. Effect of different concentrations of glucose and fructose		
9.3.6.4. Effect of nitrogen source		
9.3.6.5. Effect of different concentrations of defatted soyabean		
and skim milk		
9.3.6.6. Effect of different concentrations of sodium fluoride	48	
9.3.6.7. Effect of different concentrations of dipotassium hydrogen phosphate	49	
9.3.7. Effect of incorporation of propylene glycol, polyethylene glycol 400 and tween 80	49	
10. Testing vitamin D₃ biotransformation by some selected	50	
variants obtained from UV and gamma irradiated cells of the test isolate		
10.1. Exposure of the test isolate to UV and gamma rays	50	
10.2. Testing vitamin D ₃ biotransformation by selected variants	51	
11. Testing vitamin D₃ biotransformation in two formulated media by the wild type test isolate and one of its gamma rays variants	51	
12. Biotransformation of vitamin D ₃ using cell lysate of the test isolate		
12.1. Preparation of cell lysate of the test isolate		
12.2. Vitamin D ₃ biotransformation procedure using the prepared cell lysate	52	
Results		
Recovery and microscopical characterization of soil isolates	53	
2. Screening of the collected isolates for vitamin D ₃ biotransformation		
2.1. TLC analysis		
2.2. Mass spectrometry analyses		
Quantitation of calcitriol produced by isolate A11-2 by means of TLC/HPLC coupled assay		
4. Identification of the test isolate A11-2		
5. Physiological factors affecting vitamin D ₃ biotransformation by		
Actinomyces hyovaginalis isolate A11-2		
5.1. Effect of different culture media used for preculture		
5.2. Effect of timing of the vitamin D ₃ addition		
5.3. Effect of duration of the bioconversion process		
5.4. Effect of Initial pH of basal medium		
5.5. Effect of the initial quantity added of vitamin D ₃	75	

F.C. Effect of different based and divine in another to	70
5.6. Effect of different basal medium ingredients	76
5.6.1. Effect of separate removal of some basal medium ingredients	76
5.6.2. Effect of replacement of basal medium glucose with other carbon sources	77
5.6.3. Effect of different concentrations of glucose and fructose	78
5.6.4. Effect of replacement of basal medium defatted soyabean	79
with other nitrogen sources	19
5.6.5. Effect of different concentrations of defatted soyabean and skim milk	80
5.6.6. Effect of different concentrations of sodium fluoride	82
5.6.7. Effect of different concentrations of dipotassium hydrogen phosphate	82
5.7. Effect of incorporation of propylene glycol, polyethylene glycol 400 and tween 80	83
6. Testing vitamin D ₃ biotransformation by some selected variants obtained from UV and gamma irradiated cells of the test isolate	84
6.1. Vitamin D₃ biotransformation by UV-variants	
6.2. Vitamin D ₃ biotransformation by gamma rays variants	
 Testing vitamin D₃ biotransformation in two formulated media by the wild type test isolate and its gamma rays variant γM1 	
8. Biotransformation of vitamin D ₃ using cell lysate of the test isolate	88
Discussion	91
Isolation and microscopical characterization of microorganisms	92
Screening for vitamin D ₃ biotransformation	
Identification of the test isolate A11-2	
Physiological factors affecting vitamin D ₃ biotransformation using <i>Actinomyces hyovaginalis</i> isolate A11-2	
Testing vitamin D ₃ biotransformation by some selected variants obtained from UV and gamma irradiated cells of <i>Actinomyces hyovaginalis</i> isolate A11-2	
Testing vitamin D_3 biotransformation in two formulated media by the wild type test isolate and its gamma rays variant $\gamma M1$	110

Biotransformation of vitamin D ₃ using cell lysate of the test isolate	111
Conclusion	112
Future prospectives	113
Summary	114
References	121

LIST OF FIGURES

Figure no.	Title	Page
1	Chemical structure of vitamin D_2 (a) and vitamin D_3 (b)	3
2	Biosynthesis of vitamin D ₃ in animals' skin	
3	Metabolic activation of vitamin D ₃ in liver and kidney	
4	Scanning electron micrograph of an Actinomycete member	18
5	Microscopic picture of <i>Nocardia</i> in sputum	
6	Microscopic picture of Actinomyces	
7	Paraffin agar plate exhibiting white chalky colonies as indicated by the arrows in the right side with a control plate in the left side of the figure	
8	Microscopic examination (100x) of an isolate stained with safranin showing delicate irregularly bent mycelia displaying true branching (a) and an isolate stained with crystal violet showing fragmented mycelia (b)	54
9	TLC analysis profile, as photographed under UV light, of concentrated extracts of some soil isolates against 1α -hydroxyvitamin D_3 , calcitriol standard and vitamin D_3	56

10	MS analysis profile of the concentrated extract of isolate A11-2	57
11	MS/MS profiles of the concentrated extract of isolate A11-2 showing precursor ions characteristic for calcitriol (a) and those characteristic for calcidiol (b)	60
12	Fragmentation pattern of the precursor ion m/z 416 of the standard calcitriol preparation (a) and the concentrated extract of isolate A11-2 (b)	61
13	Fragmentation pattern of the precursor ion m/z 399 of the concentrated extract of isolate A11-2	62
14	Fragmentation pattern of the precursor ion m/z 383 of the concentrated extract of isolate A11-2	62
15	Comparison of the intensities of the produced calcidiol and calcitriol by the five positive isolates as analyzed by MS/MS.	63
16	HPLC analyses of the methanolic extracts of TLC spot of isolate A11-2 (sample) (a), calcitriol standard (b) and mixture of calcitriol standard/vitamin D_3	65
17	Effect of different culture media used for preculture on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2	72

18	Effect of timing of vitamin D ₃ addition to the main culture on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2	73
19	Effect of duration time of vitamin D ₃ bioconversion reaction on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2.	
20	Effect of initial pH value of main culture medium on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2.	
21	Effect of the initial quantity of vitamin D ₃ added to the main culture on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2.	76
22	Effect of separate removal of some basal medium ingredients on growth and production of calcitriol by Actinomyces hyovaginalis isolate A11-2.	77
23	Effect of replacement of basal medium glucose with other carbon sources on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2.	78
24	Effect of different concentrations of glucose (a) and fructose (b) in main culture medium on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2.	79
25	Effect of replacement of basal medium defatted soyabean with other nitrogen sources on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2.	80
26	Effect of different concentrations of defatted soyabean (a) and skim milk (b) in main culture medium on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2.	81
27	Effect of different concentrations of sodium fluoride in main culture medium on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2	82

28	Effect of different concentrations of dipotassium hydrogen phosphate in main culture medium on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2.	
29	Effect of incorporation of propylene glycol, polyethylene glycol 400 and tween 80 to the main culture medium on growth and production of calcitriol by <i>Actinomyces hyovaginalis</i> isolate A11-2.	84
30	Growth and biotransformation of vitamin D ₃ by UV-variants of <i>Actinomyces hyovaginalis</i> isolate A11-2.	85
31	Growth and biotransformation of vitamin D ₃ by gamma rays variants of <i>Actinomyces hyovaginalis</i> isolate A11-2.	
32	Growth and vitamin D_3 biotransformation by wild type <i>Actinomyces hyovaginalis</i> isolate A11-2 (a) and its variant γ M1 (b) in two formulated main culture media (SkM and SbM).	87
33	Biotransformation of vitamin D_3 into calcitriol using different initial cell counts of <i>Actinomyces hyovaginalis</i> isolate A11-2 cell lysate.	90

LIST OF TABLES

Table no.	Title	Page
1	Different chemicals used throughout the present study and their sources	25
2	Additional devices used throughout the present study and their manafacturers	33
3	Identification results of test isolate A11-2 in comparison to <i>A. autotrophica</i> NRRL B-11275 (standard strain).	66
4	Identification results of the test isolate A11-2 as determined by Biolog microbial identification system assay	68
5	Biotransformation of vitamin D_3 into calcitriol using intact cells and cell lysate of <i>Actinomyces hyovaginalis</i> isolate A11-2.	89

List OF ABBREVIATIONS

Abbreviation	Definition
VDBP	Vitamin D-binding protein
25(OH) D ₃	25-hydroxyvitamin D ₃
1α, 25(OH) ₂ D ₃	1α, 25-dihydroxyvitamin D ₃
Vdh	Vitamin D₃ hydroxylase
P450/ CYP	Cytochrome P450 enzyme
VDR	Vitamin D receptor
CD14	Cluster of differentiation 14
1α(OH) D ₃	1α -hydroxyvitamin D_3
A. autotrophica	Amycolata autotrophica
A. saturnea	Amycolata saturnea
A. hrydrocarbonoxydans	Amycolata hrydrocarbonoxydans
A. alni	Amycolata alni
YMG	Yeast extract malt extract glucose
TLC	Thin layer chromatography
MS	Mass spectrometry
R_{f}	Retention factor
HPLC	High performance liquid chromatography
cfu	Colony-forming unit

Abstract

One hundred and eighty bacterial isolates were recovered from different soil collected samples using paraffin baiting technique. Grown bacterial colonies, appearing as white chalky particles around the solidified paraffin wax globules, were collected and screened for vitamin D_3 biotransformation activity. Vitamin D_3 dissolved in ethanol was added to 2 days old main culture and incubation conditions were 28° C and 200 rpm. Extraction of vitamin D_3 and its metabolites was carried out by a modified Bligh and Dyer method using methanol and methylene chloride.

Preliminary analysis, using TLC, showed that five isolates (A11-2, A13-4, A8-4, A26-7 and A26-8) could transform vitamin D_3 into 1α , 25-dihydroxyvitamin D_3 (calcitriol) with 25-hydroxyvitamin D_3 (calcidiol) as an intermediate. Such results were further confirmed using mass spectrometric analyses. The relative intensities of the produced calcidiol and calcitriol by the five positive isolates (A11-2, A13-4, A8-4, A26-7 and A26-8), as analyzed by MS/MS, were compared and it was found that the isolate A11-2 exhibited the highest product intensity for either calcitriol or calcidiol.

The test isolate A11-2 was identified using microscopical, culture and biochemical characteristics as well as Biolog microbial identification system assay. Microscopical, culture and some biochemical characteristics showed great similarity between the test isolate A11-2 and the standard strain, *A. autotrophica* NRRL B-11275. However, by conducting the Biolog microbial