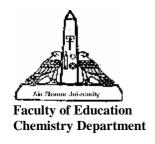


Production of Renewable Energy and Industrial Wastewater Treatment Using Different Titanium Dioxide Nanocomposites

Thesis Submitted

By Saad Mahmoud Abdel Aziz Asal

B.Sc., 2000


For

The Degree of Master for the Teacher's Preparation in Science (Inorganic Chemistry)

To

Chemistry Department Faculty of Education Ain Shams University Cairo, Egypt

2011

Approval Sheet

Name of candidate: Saad Mahmoud Abdel Aziz Asal

Degree: M. Sc. Degree for Teacher's Preparation in Science

(Inorganic Chemistry)

Thesis Title: Production of Renewable Energy and Industrial

Wastewater Treatment Using Different Titanium

Dioxide Nanocomposites

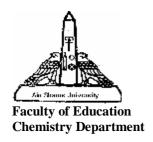
This Thesis has been approved by:

Approval

Dr. Adel Abass Ahmed Emara

Assistant Professor in Inorganic Chemistry, Faculty of Education, Ain Shams University.

Dr. Mona Mostafa Ali Saif


Lecturer in Inorganic Chemistry, Faculty of Education, Ain Shams University.

Dr. Hoda Saied Hafez

Lecturer in Inorganic Chemistry, Environmental Studies and Research Institute, Sadat City, Minofiya University.

Prof. Dr. Saied M.E. Khalil

Head of the Chemistry Department Faculty of Education Ain Shams University

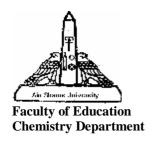
Production of Renewable Energy and Industrial Wastewater Treatment Using Different Titanium Dioxide Nanocomposites

By

Saad Mahmood Abdel Aziz Asal B.Sc., 2000

Under the Supervision of:

Dr. Adel Abass Ahmed Emara


Assistant Professor in Inorganic Chemistry, Faculty of Education, Ain Shams University.

Dr. Mona Mostafa Ali Saif

Lecturer in Inorganic Chemistry, Faculty of Education, Ain Shams University.

Dr. Hoda Saied Hafez

Lecturer in Inorganic Chemistry, Environmental Studies and Research Institute, Sadat City, Minofiya University.

Title Sheet

Name of candidate: Saad Mahmoud Abdel Aziz Asal

Date of Birth: 20/1/1977

Place of Birth: Cairo

First University Degree: B.Sc.& Ed., May 2000

Name of University: Al Azhar

ACKNOLEDGEMENT

Thanks always are for God

I would like to thank Dr. Adel Abbas Ahmed Emara, Dr. Mona Mostafa Saif (Chemistry Department, Faculty of Education, Ain Shams University) and Dr. Hoda Saied Hafez (Environmental Studies and Research Institute, Sadat City, Minofiya University) for offering me the opportunity to carry out this interesting research work under their kind supervision and guidance. I am also indebted to my supervisors for suggesting the timely and interesting point of research, following up the progress of the research and reading the manuscript critically.

I express my appreciation to Prof. Dr. M.S.A. Abdel-Mottaleb (Faculty of Science, Ain Shams University), Dr. S. Mozia, Dr. A. Heciak and Dr. D. Moszyński (West Pomeranian University of Technology, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland) for using their laboratory facilities in photobiogas/ hydrogen generation.

Also, I want to thank Prof. Dr. Basher Atteia (Faculty of Education, Ain-Shams University) Ataef Ramadan (Faculty of Education, Ain-Shams University) and Prof. Dr. Saied Mohamed El-Saied Khalil (Head of Chemistry Department, Faculty of

Education, Ain-Shams University) for their continuous encouragement.

I am thankful to the support of all members of Inorganic Chemistry laboratory in the Chemistry Department, Faculty of Education, Ain-Shams University.

ABSTRACT

ABSTRACT iii

ABSTRACT

Pure and x mol% Ln^{3+} modified TiO_2 nanomaterials ($Ln^{3+} = Eu^{3+}$ or Sm^{3+} ions, x = 0, 0.007, 0.020, 0.050, 0.070 mol%) synthesizedby a sol-gel at pH = 2. Structure and surface properties of the photocatalysts were characterized by XRD, UV-vis/DR, FT-IR, XPS and N₂ adsorption–desorption at 77 K measurements. The prepared lanthanide doped TiO₂ nanomaterials have anatase phase and exhibit Ti-O-Ln bond. The absorption spectra of the prepared samples reflect the increasing photoresponse of doped samples to visible light over pure TiO₂ and commercially available P25. Surface area is remarkably increased due to lanthanide ion-doping. XPS analysis confirms the presence of Eu³⁺ and Sm³⁺ ions in the doped samples (Eu³⁺/TiO₂ and Sm³⁺/TiO₂) in addition to the Ti⁴⁺ and O. The prepared pure and Ln³⁺ modified TiO₂ nanomaterials, as well as, commercially available P25 were applied for photocatalytic photobiogas/hydrogen from acetic acid under N₂ atmosphere. The main gaseous products of CH₃COOH decomposition using these nanomaterials were CH₄ and CO₂. Trace amounts of C₂H₆ and H₂ were also detected in the reaction mixture. Moreover, it was observed that the quantities of all identified gases increased with elongation of irradiation time. The most active photocatalysts towards CH₄ and H₂ generation were Ln³⁺/TiO₂ containing 0.050 and 0.02 mol. % of Sm and Eu, respectively. In addition, these nanomaterials were also applied for photocatalytic degradation of ABSTRACT iv

textile dyes from water under atmospheric condition. Remazol red RB 132 (RR) and brilliant blue (BB) were selected as examples of textile dyes which already used for dying in many factors. The results show that the Ln doping brought about remarkable improvement in the adsorption efficiency and photocatalytic activity over pure TiO₂. The optimal UV light reactivity of the photocatalysts for dyes decolorization was achieved for 0.02 and 0.05 mol% of Eu³⁺ and Sm³⁺ ions, respectively. The results revealed that the Ln³⁺ modification can improve the effectiveness of the photocatalysts compared to pure and commercially available TiO₂ provided that a proper amount of modifying ions is Other important parameters which influenced effectiveness of photobiogas/hydrogen generation and textile wastewater purification in case of Ln3+ modified samples were high surface area and low crystallite size of anatase. Furthermore, the presence of lanthanide oxide on the surface of TiO₂ creates a charge imbalance. Therefore, the hydroxide ions would be adsorbed on the surface as we can see from XPS measurements. The hydroxide ions act as hole traps that inhibit electron/ hole pairs recombination as well.

CONTENTS

CONTENTS

Acknowledgment	i
Abstract	iii
List of Contents	V
List of Figures	ix
List of Tables	xii
Abbreviations	xiv
Aim of the Work	XV
CHAPTER I	
INTRODUCTION and LITERATURE REVIEW	
1. General introduction	1
1.1 Problematic of the energy and environmental	
pollution	1
1.2 Nanotechnology	2
1.3 Nano-semiconductor photocatalysis	3
1.4 TiO ₂ as a nano-semiconductor photocatalyst	6
1.4.1 General remarks	6
1.4.2 TiO ₂ photocatalysis mechanism	7
1.4.3 Improving TiO ₂ photocatalysis efficiency	10
1.4.4 Preparation methods	13
1.4.5 TiO ₂ applications	15
1.4.5.1Industrial wastewater treatment and water	
disinfection.	15

1.4.5.2 Biogas and hydrogen production	. 17
1.4.5.3 Air purification	. 19
1.4.5.4 TiO ₂ as antifogging material for surfaces	. 20
1.4.5.5 TiO ₂ as a self cleaning building material	22
1.4.5.6 Self-sterilizing surfaces	. 23
2. Literature review	. 24
CHAPTER II	
EXPERIMENTAL TECHNIQUES AND METHODS	
2.1 Reagents and materials	. 31
2.2 Instrumentation.	32
2.2.1 Photochemical reactors	32
2.2.1.1 Photoreactor for textile dye removal	32
2.2.1.2 Photoreactor for biogas and hydrogen production	32
2.2.2 UV-Visible/diffuse reflectance instrumentation	32
2.2.3 FT-IR instrumentation	33
2.2.4 Gas chromatography (GC) analysis	33
2.2.5 Chemical oxygen demand (COD) analysis	33
2.2.6 X-ray diffraction (XRD)	34
2.2.7 Surface area analysis	34
2.2.8 XPS-analysis	34
2.2.9 Centrifuge	35
2.2.10 Magnetic stirrer with hot plate	35
2.2.11 pH Meter	35
2.2.12 UV Light Meter	35
2.3 Experimental methods	35

2.3.1 Preparation of the photocatalysts	35
2.3.2 Photocatalytic experiments	36
2.3.2.1 photobiogas production	36
2.3.2.2 Photodegradation experiments	36
2.4 Data analysis	37
2.4.1. XRD analysis	37
2.4.2. Surface area analysis	38
2.4.3 The kinetic rate law	39
2.4.4 Decolorization and mineralization efficiency	40
2.5 Data analysis	41
CHAPTER III	
RESULTS AND DISCUSSION	
3.1. Characterization of Ln^{3+}/TiO_2 nanocrystals ($Ln = Eu^{3+}$ or	42
Sm ³⁺)	42
3.1.1 Crystal properties	42
3.1.2 Surface analysis	45
3.1.2.1 Surface area analysis	45
3.1.2.2 XPS analysis	51
3.1.3 Optical properties	56
3.2 Environmental applications of Ln ³⁺ /TiO ₂ nanocrystals_(Ln =	<i>(</i> 2
Eu ³⁺ or Sm ³⁺)	63
3.2.1 Photobiogas/hydrogen production based on photocatalytic	<i>(</i> 2
decomposition of acetic acid	63
3.2.1.1 Hydrocarbons production from acetic acid	65
3.2.1.2 Hydrogen production from acetic acid	73

Arabic abstract

LIST OF FIGURES